[1]
Q. Shi, N. Wang, Q. Wang and J. Men, Uniaxial compressive stress-strain model for high-strength concrete confined with high-strength lateral ties, Eng. Mech. 30 (2013) 131-137.
DOI: 10.4028/www.scientific.net/amr.671-674.1958
Google Scholar
[2]
Z. Sun, B. Si, D. Wang and D. Yu, Research on confining reinforcement for high-strength stirrups, Eng. Mech. 27 (2010) 182-189.
Google Scholar
[3]
H. Qi, Y. Li, X and Lu, A practical confined concrete constitutive model under uniaxial hysteresis load, Eng. Mech. 28 (2011) 95-103.
Google Scholar
[4]
B. Wu, X. Zhao and J. Zhang, Tests on seismic behavior of thin-walled circular steel tubular columns filled with Demolished Concrete Blocks, China Civil Eng. J. 45 (2012) 1-12.
DOI: 10.1016/j.tws.2013.01.008
Google Scholar
[5]
H. Linhai, Q. Hui, T. Zhong and W. Zaifeng, Experimental behaviour of thin-walled steel tube confined concrete column to RC beam joints under cyclic loading, Thin-Walled Struct. 47 (2009) 847-857.
DOI: 10.1016/j.tws.2009.03.001
Google Scholar
[6]
X. Zhou, D. Gan, J. Liu and S. Zhang, Experiment and analysis on square tubed reinforced concrete stub columns under axial compression, J. Build. Struct. 32 (2011) 68-74.
Google Scholar
[7]
G. Wung, Z. Wu and Z. Lü, Study of the stress-strain relationship of FRP-confined circular concrete column with a strain-softening response, China Civil Eng. J. 39 (2006) 7-14.
Google Scholar
[8]
J.F. Jiang and Y.F. Wu, Identification of material parameters for Drucker-Prager plasticity model for FRP confined circular concrete columns, Int. J. Solids Struct. 49 (2012) 445-456.
DOI: 10.1016/j.ijsolstr.2011.10.002
Google Scholar
[9]
G. Lu, L. Ye, C. Yang and P. Feng, Research on stress-strain relation of concrete confined with FRP tubes, Eng. Mech. 23 (2006) 98-104.
Google Scholar
[10]
H. Ren, S. Li and C. Huang, Study on durability of CFRP subjected to freeze-thaw cycle combined with sustained load, China Civil Eng. J. 27 (2010) 7-14.
Google Scholar
[11]
F. Jesse, N. Will and M. Curbach, Loading-bearing behavior of textile-reinforced concrete, Textile-Reinforced Concrete, Farmington Hills: American Concrete Institute. (2008) 59-68.
DOI: 10.14359/20140
Google Scholar
[12]
C.I. Giorgia, M. Anna and Z. Giulio. Textile Reinforced Concrete: experimental investigation on design parameters, Mater. Struct. 46 (2013) 1933-(1951).
Google Scholar
[13]
H.W. Reinhardt, M. Kruger and M. Raupach, Behavior of textile-reinforced concrete in fire, In: Dubey A, ed. Textile-Reinforced Concrete, SP-250. Fannington Hills: American Concrete Institute, (2008) 99-109.
DOI: 10.14359/20143
Google Scholar
[14]
T. Buettner, J. Orlowsky and M. Raupach, Textile Reinforced Concrete-Durability Issues: Changes of the Bond and Tensile Strength Due to Ageing, Brittle Matrix Composites 9. (2009) 101-110.
DOI: 10.1533/9781845697754.101
Google Scholar
[15]
S. Weiland, R. Ortlepp and B. Hauptenbuchner, Textile-reinforced concrete for flexural strengthening of RC-structures part2: application on a concrete shell, Textile-Reinforced Concrete, Farmington Hills: American Concrete Institute, (2008).
DOI: 10.14359/20149
Google Scholar
[16]
F. Jesse, S. Weiland and M. Curbach, Flexural strengthening of RC structures with textile-reinforced concrete, Textile-Reinforced Concrete. Farmington Hills: American Concrete Institute, (2008) 49-58.
DOI: 10.14359/20139
Google Scholar
[17]
Y. Xun, Z. Zhi and Q. Zhang, Experimental research on flexural behavior of reinforced concrete beams strengthened with textile reinforced concrete sheets, J. Build. Struct. 31 (2010) 70-76.
Google Scholar
[18]
Y. Xun, H. Yin and B. Xiao, Experimental study on shear capacity of RC beams strengthened with textile reinforced concrete, China Civil Eng. J. 45 (2012) 58-64.
Google Scholar
[19]
S.P. Yin, H.L. Lu and S.L. Xu, Properties and calculation of normal section bearing capacity of RC flexural beam with skin textile reinforcement, J. Central South University, 20 (2013) 1731-1741.
DOI: 10.1007/s11771-013-1666-9
Google Scholar
[20]
T.C. Triantafillou, C.G. Papanicolaou and P. Zissimopoulos, Concrete confinement with textile-reinforced mortar jackets, ACI Struct. J. 103 (2006) 28-37.
DOI: 10.14359/15083
Google Scholar
[21]
D.A. Bournas, P.V. Loniou and C.G. Papanicolaou, Textile-reinforced mortar versus fiber-reinforced polymer confinement in reinforced concrete columns, ACI Struct. J. 104 (2007) 740-748.
DOI: 10.14359/18956
Google Scholar
[22]
L. Ombres, Concrete confinement with a cement based high strength composite material, Comp. Struct. 109 (2014) 294-304.
DOI: 10.1016/j.compstruct.2013.10.037
Google Scholar
[23]
P. Colajanni, M. Fossetti and G. Macaluso, Effects of confinement level, cross-section shape and corner radius on the cyclic behavior of CFRCM confined concrete columns, Constr. Build. Mater. 55 (2014) 379-389.
DOI: 10.1016/j.conbuildmat.2014.01.035
Google Scholar
[24]
P. Colajanni, F. De Domenico, A. Recupero and N. Spinella, Concrete columns confined with fibre reinforced cementitious mortars: experimentation and modeling, Constr. Build. Mater. 52 (2014) 375-384.
DOI: 10.1016/j.conbuildmat.2013.11.048
Google Scholar
[25]
L. Ombres, Concrete confinement with a cement based high strength composite material, Comp. Struct. 109 (2014) 294-304.
DOI: 10.1016/j.compstruct.2013.10.037
Google Scholar