Ultrasonic Irradiation on Microorganism Disruption in Water Disinfection Process – A Mini Overview

Article Preview

Abstract:

Ultrasonic irradiation is considered as one of the methods in advanced oxidation processes for water and wastewater treatment. In general, ultrasonic is a disinfection process that is capable to destruct and disintegrate physical and chemical contaminants, as well as pathogenic microorganisms under sonochemistry method. With sufficient frequency, power, duration of treatment and initial concentration of microbe, ultrasonic application is able to perform and cause the death of microorganisms. In addition, ultrasonic as an advanced technology is sustainable to the public health and environmental quality.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

676-681

Citation:

Online since:

April 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] N. M. Budari, M. F. Ali, and J. Kassim, Physical Contaminants Removal from Continuous Process of Water Filtration by a New Low-Cost Palm Shell Charcoal, Adv. Mater. Res., vol. 911, p.397–404, Mar. (2014).

DOI: 10.4028/www.scientific.net/amr.911.397

Google Scholar

[2] B. Tansel, New Technologies for Water and Wastewater Treatment: A Survey of Recent Patents, Recent Patents Chem. Eng., vol. 1, no. 1, p.17–26, Jan. (2008).

DOI: 10.2174/2211334710801010017

Google Scholar

[3] Z. Ujang and C. Buckley, Water and wastewater in developing countries: present reality and strategy for the future., Water Sci. Technol., vol. 46, no. 9, p.1–9, Jan. (2002).

DOI: 10.2166/wst.2002.0192

Google Scholar

[4] R. A. Al-Juboori and T. F. Yusaf, Improving the performance of ultrasonic horn reactor for deactivating microorganisms in water, IOP Conf. Ser. Mater. Sci. Eng., vol. 36, p.1–13, Sep. (2012).

DOI: 10.1088/1757-899x/36/1/012037

Google Scholar

[5] S. Broekman, O. Pohlmann, E. S. Beardwood, and E. C. de Meulenaer, Ultrasonic treatment for microbiological control of water systems., Ultrason. Sonochem., vol. 17, no. 6, p.1041–8, Aug. (2010).

DOI: 10.1016/j.ultsonch.2009.11.011

Google Scholar

[6] M. R. Doosti, R. Kargar, and M. H. Sayadi, Water treatment using ultrasonic assistance : A review, in International Academy of Ecology and Environmental Sciences, 2012, vol. 2, no. 2, p.96–110.

Google Scholar

[7] A. H. Mahvi, Application of ultrasonic technology for water and wastewater treatment, Iran. J. Public Health, vol. 38, no. 2, p.1–17, (2009).

Google Scholar

[8] G. Andaluri, E. V Rokhina, and R. P. S. Suri, Evaluation of relative importance of ultrasound reactor parameters for the removal of estrogen hormones in water., Ultrason. Sonochem., vol. 19, p.953–958, Jul. (2012).

DOI: 10.1016/j.ultsonch.2011.12.005

Google Scholar

[9] S. N. Hussain, N. de Las Heras, H. M. a Asghar, N. W. Brown, and E. P. L. Roberts, Disinfection of water by adsorption combined with electrochemical treatment., Water Res., vol. 54, p.170–8, May (2014).

DOI: 10.1016/j.watres.2014.01.043

Google Scholar

[10] World Health Organization (WHO), Disinfectants, (2014).

Google Scholar

[11] W. Wanjun, Visible-Light-Driven Photocatalysts for Bacterial Disinfection : Bactericidal Performances and Mechanisms, The Chinese University of Hong Kong, (2012).

Google Scholar

[12] N. N. Mahamuni and Y. G. Adewuyi, Advanced oxidation processes (AOPs) involving ultrasound for waste water treatment: a review with emphasis on cost estimation., Ultrason. Sonochem., vol. 17, no. 6, p.990–1003, Aug. (2010).

DOI: 10.1016/j.ultsonch.2009.09.005

Google Scholar

[13] C. Yanmin, Visible-light-driven Photocatalytic Disinfection of Bacteria by the Natural Sphalerite, The Chinese University of Hong Kong, (2011).

Google Scholar

[14] O. Ayyildiz, S. Sanik, and B. Ileri, Effect of ultrasonic pretreatment on chlorine dioxide disinfection efficiency., Ultrason. Sonochem., vol. 18, p.683–688, Mar. (2011).

DOI: 10.1016/j.ultsonch.2010.08.008

Google Scholar

[15] H. -L. Liu and Y. -R. Chiou, Optimal decolorization efficiency of Reactive Red 239 by UV/TiO2 photocatalytic process coupled with response surface methodology, Chem. Eng. J., vol. 112, no. 1–3, p.173–179, Sep. (2005).

DOI: 10.1016/j.cej.2005.07.012

Google Scholar

[16] J. H. Gibson, D. Hai, N. Yong, R. R. Farnood, and P. Seto, A Literature Review of Ultrasound Technology and Its Application in Wastewater Disinfection, vol. 43, no. 1, p.23–35, (2008).

DOI: 10.2166/wqrj.2008.004

Google Scholar

[17] S. Pilli, P. Bhunia, S. Yan, R. J. LeBlanc, R. D. Tyagi, and R. Y. Surampalli, Ultrasonic pretreatment of sludge: a review., Ultrason. Sonochem., vol. 18, no. 1, p.1–18, Jan. (2011).

DOI: 10.1016/j.ultsonch.2010.02.014

Google Scholar

[18] T. Yusaf and R. A. Al-Juboori, Alternative methods of microorganism disruption for agricultural applications, Appl. Energy, vol. 114, p.909–923, Feb. (2014).

DOI: 10.1016/j.apenergy.2013.08.085

Google Scholar

[19] A. Roberto, C. Bello, D. D. F. Angelis, and R. Naves, Ultrasound Efficiency in Relation to Sodium Hypochlorite and Filtration Adsorption in Microbial Elimination in a Water Treatment Plant, Brazilian Arch. Biol. Technol., vol. 48, no. September, p.739–745, (2005).

DOI: 10.1590/s1516-89132005000600009

Google Scholar

[20] Y. T. Shah, A. B. Pandit, and V. S. Moholkar, Cavitation reaction engineering. Plenum Publishers, USA, (1999).

Google Scholar

[21] O. Ayyildiz, Ultrasonic and Air Stripping Removal of CCl4 and TCA from Water: Investigating Synergistic Effects, Illinois Institute of Technology, Chicago, (2003).

Google Scholar

[22] A. Paleologou, H. Marakas, N. P. Xekoukoulotakis, A. Moya, Y. Vergara, N. Kalogerakis, P. Gikas, and D. Mantzavinos, Disinfection of water and wastewater by TiO2 photocatalysis, sonolysis and UV-C irradiation, Catal. Today, vol. 129, no. 1–2, p.136–142, Nov. (2007).

DOI: 10.1016/j.cattod.2007.06.059

Google Scholar

[23] United States Environmental Protection Agency (USEPA), Basic Information about Disinfection Byproducts in Drinking Water Total Trihalomethanes, Haloacetic Acids, Bromate, and Chlorite Basic Information about Regulated Drinking Water Contaminants US EPA., (2014).

Google Scholar

[24] E. Joyce, S. S. Phull, J. P. Lorimer, and T. J. Mason, The development and evaluation of ultrasound for the treatment of bacterial suspensions. A study of frequency, power and sonication time on cultured Bacillus species, Ultrason. Sonochem., vol. 10, no. 6, p.315–318, Oct. (2003).

DOI: 10.1016/s1350-4177(03)00101-9

Google Scholar

[25] M. H. Dehghani and A. Fadaei, Sonochemical kinetic model of diazinon and malathion pesticides degradation in aqueous solution, Indian J. Sci. Technol., vol. 6, no. 1, p.3876–3881, (2013).

DOI: 10.17485/ijst/2013/v6i1.19

Google Scholar

[26] M. Gholami, R. Mirzaie, R. Mohammadi, Z. Zarghampour, and A. Afshari, Destruction of Escherichia coli and Enterococcus faecalis using Low Frequency Ultrasound Technology : A Response Surface Methodology, Heal. Scope, vol. 3, no. 1, p.1–9, (2014).

DOI: 10.17795/jhealthscope-14213

Google Scholar

[27] M. H. Dehghani, Effectiveness of Ultrasound on the Destruction of E . coli, Am. J. Environ. Sci., vol. 1, no. 3, p.187–189, (2005).

Google Scholar

[28] T. J. Mason, E. Joyce, S. S. Phull, and J. P. Lorimer, Potential uses of ultrasound in the biological decontamination of water., Ultrason. Sonochem., vol. 10, no. 6, p.319–23, Oct. (2003).

DOI: 10.1016/s1350-4177(03)00102-0

Google Scholar

[29] M. Furuta, M. Yamaguchi, T. Tsukamoto, B. Yim, C. E. Stavarache, K. Hasiba, and Y. Maeda, Inactivation of Escherichia coli by ultrasonic irradiation., Ultrason. Sonochem., vol. 11, no. 2, p.57–60, Apr. (2004).

DOI: 10.1016/s1350-4177(03)00136-6

Google Scholar

[30] A. H. Mahvi, H. Dehghani, and E. B. Kia, Inactivation of nematodes by ultrasonic, J. Med. Sci., vol. 5, no. 2, p.75–77, (2005).

Google Scholar

[31] F. H. Kayser, K. A. Bienz, J. Eckert, and R. M. Zinkernagel, Medical Microbiology, 1st ed., vol. 32, no. 10. New York: Thieme, 2005, p.152.

Google Scholar