[1]
S.U.S. Choi, Enhancing Thermal Conductivity of Fluids with Nanoparticles, Developments and Applications of Non-Newtonian Flows, 1995, FED-vol. 231/MD-vol. 66: 99-105.
Google Scholar
[2]
S.A. Puntam, D. G. Cahill, P.V. Braun, Thermal Conductivity of Nanoparticle Suspensions. J. Appl. Phys. 99 (2006) 084308: 1-6.
Google Scholar
[3]
M.S. Liu, C.C. Lin Mark, C.Y. Tsai, et al. Enhancement of Thermal Conductivity with Cu for Nanofluids Using Chemical Reduction Method. Int. J. Heat Mass Transfer. 49 (2006)3028-3033.
DOI: 10.1016/j.ijheatmasstransfer.2006.02.012
Google Scholar
[4]
T.K. Hong, H.S. Yang, C.J. Choi, Study of the Enhanced Thermal Conductivity of Fe Nanofluids. J. Appl. Phys. 97 (2005) 064311 1-4.
Google Scholar
[5]
H.T. Zhu, C. Y. Zhang, S. Liu, Effects of Nanoparticle Clustering and Alignment on Thermal Conductivities of Fe3O4 Aqueous Nanofluids. Appl. Phys. Letters. 89 (2006) 23123 1-3.
DOI: 10.1063/1.2221905
Google Scholar
[6]
M. Jones, C.H. Li, A. Afjeh, et al. Experimental study of combustion characteristics of nanoscale metal and metal oxide additives in biofuel (ethanol). Nanoscale Res. Lett. 6 (2011) 246-257.
DOI: 10.1186/1556-276x-6-246
Google Scholar
[7]
H.Q. Xie, J. Wang, T. Xi, et al. Thermal Conductivity Enhancement of Suspensions Containing Nanosized Alumina Particles. J. Appl. Phys. 91 (2002) 4568-4572.
DOI: 10.1063/1.1454184
Google Scholar
[8]
K.Q. Ma, J. Liu, Nano liquid-metal fluid as ultimate coolant. Phys. Lett. A. 361(2007) 252-256.
Google Scholar
[9]
M.S. Liu, M.C.C. Lin, I. T. Huang, et al. Enhancement of Thermal Conductivity with Carbon Nanotube for Nanofluids. Int. Commun. Heat Mass Transfer. 32(2005) 1202-1210.
DOI: 10.1016/j.icheatmasstransfer.2005.05.005
Google Scholar
[10]
B. Yang, Z.H. Han. Thermal Conductivity Enhancement in Water-in-FC72 Nanoemulsion Fluids. Appl. Phys. Lett. 88 (2006) 261914 1-3.
DOI: 10.1063/1.2218325
Google Scholar
[11]
X. Zhang, H. Gu, M. Fujii, Experimental Study on the Effective Thermal Conductivity and Thermal Diffusivity of Nanofluids. Int. J. Thermophysics. 27(2006) 569-580.
DOI: 10.1007/s10765-006-0054-1
Google Scholar
[12]
C. Choi, H.S. Yoo, J.M. Oh, Preparation and heat transfer properties of nanoparticle-in-transformer oil dispersions as advanced energy-efficient coolants. Curr. Appl. Phys. 8 (2008) 710-712.
DOI: 10.1016/j.cap.2007.04.060
Google Scholar
[13]
P. Hu, W.L. Shan, F. Yu, et al. Thermal Conductivity of AlN-Ethanol Nanofluids. Int. J. Thermophys. 29 (2008) 1968-(1973).
DOI: 10.1007/s10765-008-0529-3
Google Scholar
[14]
W. Yu, H.Q. Xie, Y. Li, et al. Experimental investigation on thermal conductivity and viscosity of aluminum nitride nanofluid. Particuology. 9 (2011) 187-191.
DOI: 10.1016/j.partic.2010.05.014
Google Scholar
[15]
C.Y. Zhi, Y.B. Xu, Y. Bando, et al. Highly Thermal-conductivity Fluid with Boron Nitride Nnanofillers. Acs Nanop. 5(8) (2011) 6571-6577.
DOI: 10.1021/nn201946x
Google Scholar
[16]
S.M.S. Murshed, K.C. Leong, C. Yang, Enhanced Thermal Conductivity of TiO2-water Based Nanofluids. Int. J. Thermal Sciences. 44 (2005) 367-373.
DOI: 10.1016/j.ijthermalsci.2004.12.005
Google Scholar
[17]
D.S. Zhu, X.F. Li, N. Wang, et al. Dispersion behavior and thermal conductivity characteristics of Al2O3-H2O nanofluids, Curr. Appl. Phys. 9(1) (2009) 131-139.
DOI: 10.1016/j.cap.2007.12.008
Google Scholar
[18]
H.Q. Xie, H. Lee, W. Youn, et al. Nanofluids Containing Multiwalled Carbon Nanotubes and Their Enhanced Thermal Conductivities. J. Appl. Phys. 94 (2003) 4967-4971.
DOI: 10.1063/1.1613374
Google Scholar
[19]
J.T. Wu , H.F. Zheng, X.H. Qian, X.J. Li, Assael MJ: Thermal Conductivity of Liquid 1, 2-Dimethoxyethane from 243K to 353K at Pressures up to 30Mpa. Int. J. Thermophys. 30 (2009) 385-396.
DOI: 10.1007/s10765-008-0549-z
Google Scholar