Experimental Investigation on Thermophysical Performance of BN/EG Nanofluids Influenced by Dispersant

Article Preview

Abstract:

Boron nitride/ethylene alcohol (BN/EG) nanofluid was synthesized by two-step method. The effect of dispersant on stability, viscosity and thermal conductivity enhancement was investigated. The experimental results indicated that the addition of anionic dispersant (SHMP) and catioic dispersant (CTAB) will induce the severe deterioration of stability of BN/EG nanofluids. PVP, which belonging to non-ionic dispersant, can improve the stability and fluidity obviously besides keeping the enhancement of thermal conductivity.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

7-12

Citation:

Online since:

April 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] S.U.S. Choi, Enhancing Thermal Conductivity of Fluids with Nanoparticles, Developments and Applications of Non-Newtonian Flows, 1995, FED-vol. 231/MD-vol. 66: 99-105.

Google Scholar

[2] S.A. Puntam, D. G. Cahill, P.V. Braun, Thermal Conductivity of Nanoparticle Suspensions. J. Appl. Phys. 99 (2006) 084308: 1-6.

Google Scholar

[3] M.S. Liu, C.C. Lin Mark, C.Y. Tsai, et al. Enhancement of Thermal Conductivity with Cu for Nanofluids Using Chemical Reduction Method. Int. J. Heat Mass Transfer. 49 (2006)3028-3033.

DOI: 10.1016/j.ijheatmasstransfer.2006.02.012

Google Scholar

[4] T.K. Hong, H.S. Yang, C.J. Choi, Study of the Enhanced Thermal Conductivity of Fe Nanofluids. J. Appl. Phys. 97 (2005) 064311 1-4.

Google Scholar

[5] H.T. Zhu, C. Y. Zhang, S. Liu, Effects of Nanoparticle Clustering and Alignment on Thermal Conductivities of Fe3O4 Aqueous Nanofluids. Appl. Phys. Letters. 89 (2006) 23123 1-3.

DOI: 10.1063/1.2221905

Google Scholar

[6] M. Jones, C.H. Li, A. Afjeh, et al. Experimental study of combustion characteristics of nanoscale metal and metal oxide additives in biofuel (ethanol). Nanoscale Res. Lett. 6 (2011) 246-257.

DOI: 10.1186/1556-276x-6-246

Google Scholar

[7] H.Q. Xie, J. Wang, T. Xi, et al. Thermal Conductivity Enhancement of Suspensions Containing Nanosized Alumina Particles. J. Appl. Phys. 91 (2002) 4568-4572.

DOI: 10.1063/1.1454184

Google Scholar

[8] K.Q. Ma, J. Liu, Nano liquid-metal fluid as ultimate coolant. Phys. Lett. A. 361(2007) 252-256.

Google Scholar

[9] M.S. Liu, M.C.C. Lin, I. T. Huang, et al. Enhancement of Thermal Conductivity with Carbon Nanotube for Nanofluids. Int. Commun. Heat Mass Transfer. 32(2005) 1202-1210.

DOI: 10.1016/j.icheatmasstransfer.2005.05.005

Google Scholar

[10] B. Yang, Z.H. Han. Thermal Conductivity Enhancement in Water-in-FC72 Nanoemulsion Fluids. Appl. Phys. Lett. 88 (2006) 261914 1-3.

DOI: 10.1063/1.2218325

Google Scholar

[11] X. Zhang, H. Gu, M. Fujii, Experimental Study on the Effective Thermal Conductivity and Thermal Diffusivity of Nanofluids. Int. J. Thermophysics. 27(2006) 569-580.

DOI: 10.1007/s10765-006-0054-1

Google Scholar

[12] C. Choi, H.S. Yoo, J.M. Oh, Preparation and heat transfer properties of nanoparticle-in-transformer oil dispersions as advanced energy-efficient coolants. Curr. Appl. Phys. 8 (2008) 710-712.

DOI: 10.1016/j.cap.2007.04.060

Google Scholar

[13] P. Hu, W.L. Shan, F. Yu, et al. Thermal Conductivity of AlN-Ethanol Nanofluids. Int. J. Thermophys. 29 (2008) 1968-(1973).

DOI: 10.1007/s10765-008-0529-3

Google Scholar

[14] W. Yu, H.Q. Xie, Y. Li, et al. Experimental investigation on thermal conductivity and viscosity of aluminum nitride nanofluid. Particuology. 9 (2011) 187-191.

DOI: 10.1016/j.partic.2010.05.014

Google Scholar

[15] C.Y. Zhi, Y.B. Xu, Y. Bando, et al. Highly Thermal-conductivity Fluid with Boron Nitride Nnanofillers. Acs Nanop. 5(8) (2011) 6571-6577.

DOI: 10.1021/nn201946x

Google Scholar

[16] S.M.S. Murshed, K.C. Leong, C. Yang, Enhanced Thermal Conductivity of TiO2-water Based Nanofluids. Int. J. Thermal Sciences. 44 (2005) 367-373.

DOI: 10.1016/j.ijthermalsci.2004.12.005

Google Scholar

[17] D.S. Zhu, X.F. Li, N. Wang, et al. Dispersion behavior and thermal conductivity characteristics of Al2O3-H2O nanofluids, Curr. Appl. Phys. 9(1) (2009) 131-139.

DOI: 10.1016/j.cap.2007.12.008

Google Scholar

[18] H.Q. Xie, H. Lee, W. Youn, et al. Nanofluids Containing Multiwalled Carbon Nanotubes and Their Enhanced Thermal Conductivities. J. Appl. Phys. 94 (2003) 4967-4971.

DOI: 10.1063/1.1613374

Google Scholar

[19] J.T. Wu , H.F. Zheng, X.H. Qian, X.J. Li, Assael MJ: Thermal Conductivity of Liquid 1, 2-Dimethoxyethane from 243K to 353K at Pressures up to 30Mpa. Int. J. Thermophys. 30 (2009) 385-396.

DOI: 10.1007/s10765-008-0549-z

Google Scholar