Review on Cutting Force Compensation Techniques for Machine Tools Application

Article Preview

Abstract:

This paper reviews compensation methods on effects of disturbance forces on positioning accuracy in linear drives system for machine tools applications. Linear motor is directly subjected to disturbances forces acting in the direction of motion giving rise to the needs for alternative robust controllers in order to ensure precision and high tracking performance. This paper investigates effect of cutting forces generated during milling process on tracking accuracy of a linear drive motor. Recent studies are focusing on design of adaptive compensators that provide robustness against system uncertainties while maintaining high degree of precision and accuracy generally required in high performance machining applications.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

250-254

Citation:

Online since:

May 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] S. Gordon, M.T. Hillery, Development of a high-speed CNC cutting machine using linear motors, J. Mater. Process. Technol. 166 (2005) 321-329.

DOI: 10.1016/j.jmatprotec.2003.08.009

Google Scholar

[2] E. Abele, U. Fiedler, Online Process Monitoring vs. Offline Chatter Prediction - Possibilities of Process Stabilization in Machining, International Mechanical Engineering Congress & Exposition, Nov (2003).

Google Scholar

[3] Y. Altintas, Manufacturing Automation: Metal Cutting Mechanics, Machine Tool Vibrations, and CNC Design, Cambridge University Press, Cambridge, (2000).

DOI: 10.1017/cbo9780511843723

Google Scholar

[4] A. Albrecht, S.S. Park, Y. Altintas, G. Pritschow, High frequency bandwidth cutting force measurement in milling using capacitance displacement sensors, Int. J. Mach. Tools Manuf. 45 (2005) 993-1008.

DOI: 10.1016/j.ijmachtools.2004.11.028

Google Scholar

[5] G.F. Franklin, J.D. Powell, A.E. Naeini, Feedback Control of Dynamic System, fourth ed., Addison-Wesley, New Jersey, (2002).

Google Scholar

[6] Y. Li, H.K. Ang, Y.G.C. Chong, PID control system analysis and design, IEEE Control Syst. Mag. 26 (2006) 32-41.

Google Scholar

[7] M.F. Rahmat, S.N. Sy Salim, N.H. Sunar, A.A. Mohd Faudzi, Z.H. Ismail, K. Huda, Identification and non-linear control strategy for industrial pneumatic actuator, Int. J. Phys. Sci. 7(2012) 2565-2579.

Google Scholar

[8] Y.X. Su, D. Sun, Y.B. Duan, Design of an enhanced nonlinear pid controller. Mechatron. 15 (2005) 1005-1024.

DOI: 10.1016/j.mechatronics.2005.03.003

Google Scholar

[9] B. Armstrong, D. Neevel, T. Kusik, New results in NPID Control: tracking, integral, friction compensation and experimental results, IEEE Trans. Control Syst. Technol. 9 (2001) 399-406.

DOI: 10.1109/87.911392

Google Scholar

[10] L. Abdullah, Z. Jamaludin, N.A. Rafan, J. Jamaludin, T.H. Chiew, S. Maidin, Assessment on tracking error performance of cascade P/PI, NPID and N-cascade controller for precise positioning of XY table ballscrew drive system, IOP Conf. Series: Materials Science and Engineering, 53 (2013).

DOI: 10.1088/1757-899x/53/1/012010

Google Scholar

[11] V. Lampaert, J. Swevers, F. Al Bender, Comparison of Model and Non-Model Based Friction Compensation Techniques in the Neighbourhood of Pre-Sliding Regime, American Control Conference, pp.1121-1126, (2004).

DOI: 10.23919/acc.2004.1386722

Google Scholar

[12] L. Abdullah, Z. Jamaludin, M.R. Salleh, B. Abu Bakar, J. Jamaludin, T.H. Chiew, N.A. Rafan, Theoretical analysis of velocity and position loop behaviour of nonlinear cascade feedforward controller for positioning of XY table ballscrew drive system, Adv. Mater. Res. 845 (2014).

DOI: 10.4028/www.scientific.net/amr.845.831

Google Scholar

[13] Z. Jamaludin, H. Van Brussel, G. Pipeleers, J. Swevers, Accurate motion control of XY high-speed linear drives using friction model feedforward and cutting forces estimation, CIRP Ann. Manuf. Technol. 57 (2008) 403-406.

DOI: 10.1016/j.cirp.2008.03.037

Google Scholar

[14] J.R. Ryoo, T.Y. Doh, M.J. Chung, Robust disturbance observer for the track-following control system of an optical disk drive, Control Eng. Pract. 12 (2004) 577-585.

DOI: 10.1016/s0967-0661(03)00140-0

Google Scholar

[15] G. Pritschow, S. Fritz, P. Pruschek, Reconstruction of Process Forces of Direct Drives Using the Ferraris Sensor, VIIth International Conference on Monitoring and Automatic Supervision in Manufacturing, Aug (2004).

Google Scholar

[16] Z. Jamaludin, H. Van Brussel, J. Swevers, Friction compensation of an XY feed table using friction-model-based feedforward and an inverse-model-based disturbance observer. IEEE Trans. Ind. Electron. 56 (2009) 3848-3853.

DOI: 10.1109/tie.2009.2017560

Google Scholar

[17] G.C. Aurelio, P.A. Omar, F.B. Vicente, R.S. Pedro, G.G. Pablo, Application of a repetitive controller for a three-phase active power filter, IEEE Trans. Power Electron. 22 (2007).

Google Scholar

[18] M.C. Tsai, W.S. Yao, Design of a plug-in type repetitive controller for periodic inputs, IEEE Trans. Control Syst. Technol. 10 (2002) 547-555.

DOI: 10.1109/tcst.2002.1014674

Google Scholar