Base Algorithms of the Direct Adaptive Position-Path Control for Mobile Objects Positioning

Article Preview

Abstract:

Problem of a mobile object positioning in the presence of determinate disturbances is considered in this paper. A mobile object is described by kinematics and dynamics equations of a solid body in three dimensional space. The control inputs of the mobile object are forces and torques. Design of adaptive control is based on position-path control method for mobile objects. In this article two algorithms of the adaptive position-path control are developed. The first algorithm is adaptive position-path control with integration component and a reference model. The second algorithm is adaptive position-path control with a reference model and an extended mobile robot model. Block diagram of the direct adaptive position-path control system with a reference model is suggested. Design procedures of the adaptive position-path control systems and stability analysis of the closed-loop systems are presented. Computer simulation results of the designed adaptive closed-loop systems with both constant and variable disturbances are presented. On base of the analysis and modeling results conclusions are provided.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

110-119

Citation:

Online since:

May 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Results of the XII National Conference on Control Problems: an analytical review. http: /vspu2014. ipu. ru/ (in the Russian language).

Google Scholar

[2] Pshikhopov, V. , Medvedev, M. , Gaiduk, A. , Belyaev, V. , Fedorenko, R. , Krukhmalev, V., Position-trajectory control system for robot on base of airship, 52nd IEEE Conference on Decision and Control, CDC 2013, 10-13 Dec. 2013, Firenze, Italy, Pages: 3590 – 3595; ISSN : 0743-1546; Print ISBN: 978-1-4673-5714-2; DOI: 10. 1109/CDC. 2013. 6760435.

DOI: 10.1109/cdc.2013.6760435

Google Scholar

[3] Medvedev M. Y., Pshikhopov V. Kh., Robust control of nonlinear dynamic systems / Proc. of 2010 IEEE Latin-American Conference on Communications. September 14 – 17, 2010, Bogota, Colombia. ISBN: 978-1-4244-7172-0.

Google Scholar

[4] V. Kh. Pshikhopov, M. Yu. Medvedev, M. Yu. Sirotenko and M.A. Batchaev. Structural Design of Autopilots for Mobile Objects with Disturbance Estimation. Proc. of SAUM'07. IX Triennial International SAUM Conference on Systems Automatic Control and Measurements. University of Niš, Niš, Serbia. November 22-23. 2007. Pp. 151 – 155.

Google Scholar

[5] Pshikhopov V. Kh., Medvedev M. Yu. Structural Design of the Control System for Mobile Robots with Disturbances Estimation / FACTA UNIVERSITATIS. Series: Automatic Control and Robotics Vol. 7, No 1, 2008, p.111 – 120.

Google Scholar

[6] Pshikhopov V. Kh., Medvedev M. Y., and Gurenko B. V. Homing and Docking Autopilot Design for Autonomous Underwater Vehicle / Applied Mechanics and Materials Vols. 490-491 (2014).

DOI: 10.4028/www.scientific.net/amm.490-491.700

Google Scholar

[7] V. Kh. Pshikhopov, M. Yu. Medvedev, B.V. Gurenko, and A.M. Maevsky. Indirect adaptive control for underwater vehicles on base of nonlinear estimator of disturbances / 2014 Proceedings of the 18th International Conference on Systems (part of CSCC '14). Santorini Island, Greece, July 17-21, 2014. Pp. 46 – 51. ISSN: 1790-5117. ISBN: 978-1-61804-243-9 (vol. 1), 978-1-61804-244-6 (vol. 2).

DOI: 10.4028/www.scientific.net/amm.799-800.1028

Google Scholar

[8] Pshikhopov, V. Kh., Medvedev, M. Yu., Gaiduk, A.R., Gurenko, B.V. Control system design for autonomous underwater vehicle / Proceedings – 2013 IEEE Latin American Robotics Symposium, LARS 2013  PP. 77 – 82. doi: 10. 1109/LARS. 2013. 61.

DOI: 10.1109/lars.2013.61

Google Scholar

[9] Pshikhopov, V. , Medvedev, M. , Gaiduk, A. , Belyaev, V. , Fedorenko, R. , Krukhmalev, V., Position-trajectory control system for robot on base of airship, 52nd IEEE Conference on Decision and Control, CDC 2013, 10-13 Dec. 2013, Firenze, Italy, Pages: 3590 – 3595; ISSN : 0743-1546; Print ISBN: 978-1-4673-5714-2; DOI: 10. 1109/CDC. 2013. 6760435.

DOI: 10.1109/cdc.2013.6760435

Google Scholar

[10] V. Kh. Pshikhopov, M. Yu. Medvedev, A.R. Gaiduk, R.V. Fedorenko, V.A. Krukhmalev, B.V. Gurenko. Position-Trajectory Control System for Unmanned Robotic Airship. Preprints of the 19th World Congress the International Federation of Automatic Control. Cape Town, South Africa. August 24-29, 2014. Pp. 8953 – 8958.

DOI: 10.3182/20140824-6-za-1003.00393

Google Scholar

[11] Pshikhopov V., Medvedev M., Kostjukov V., Fedorenko R., Gurenko B., Krukhmalev V. Airship autopilot design / SAE Technical Papers. October 18-21, 2011. doi: 10. 4271/2011-01-2736.

DOI: 10.4271/2011-01-2736

Google Scholar

[12] Pshikhopov, V., Sergeev, N., Medvedev, M., and Kulchenko, A., The Design of Helicopter Autopilot, SAE Technical Paper 2012-01-2098, 2012, doi: 10. 4271/2012-01-(2098).

DOI: 10.4271/2012-01-2098

Google Scholar

[13] I. D. Landau, Adaptive Control: The Model Reference Approach. New York: Marcel Dekker, (1979).

Google Scholar

[14] G. Tao, Adaptive Control Design and Analysis. Hoboken, NJ: Wiley-Interscience, (2003).

Google Scholar

[15] V. Pshikhopov, M. Medvedev, and V. Chufistov. Study of control forces and torques distribution algorithms for intelligent control of vehicle actuators / Proceedings of the 2014 International Conference on Mechatronics and Robotics, Structural Analysis (MEROSTA 2014). Santorini Island, Greece, July 17-21, 2014. Pp. 94 – 97. ISBN: 978-1-61804-242-2.

Google Scholar

[16] Pshikhopov, V. Kh., Krukhmalev, V.A., Medvedev, M. Yu., Budko, A. Yu., Chufistov, V.M., Adaptive control system design for robotic aircrafts, 2013 IEEE Latin American Robotics Symposium, LARS 2013, doi: 10. 1109/LARS. 2013. 59.

DOI: 10.1109/lars.2013.59

Google Scholar

[17] Rutkovsky V. Yu., Sukhanov V.M., Glumov V.M., Algorithm of Adaptation in the Attitude Control System of a Flexible Spacecraft, 9th International Conference on Mathematical Problems in Engineering, Aerospace and Sciences (Icnpaa 2012), AIP Conference Proceedings, 1493, ed. Sivasundaram S., Amer Inst Physics, 2012, 816–821, ISBN: 978-0-7354-1105-0.

DOI: 10.1063/1.4765582

Google Scholar

[18] V. Yu. Rutkovskii, V. M. Glumov, V. M. Sukhanov, Physically realizable reference model-based algorithm of adaptive control, Autom. Remote Control, 72: 8 (2011), 1667–1678.

DOI: 10.1134/s0005117911080054

Google Scholar

[19] V.M. Glumov, S.D. Zemlyakov, V. Yu. Rutkovkiy, V.M. Sukhanov Appliance of the concept of adaptive control with reference model for task of monitoring of transmission shafts, Journal of Automatics and Telemechanics, 2003, № 5, P. 131–146.

Google Scholar

[20] Pshikhopov, V. Kh., Medvedev, M. Yu., Block design of robust control systems by direct Lyapunov method, 2011, IFAC Proceedings Volumes (IFAC-PapersOnline), doi: 10. 3182/20110828-6-IT-1002. 00006.

DOI: 10.3182/20110828-6-it-1002.03392

Google Scholar