[1]
W.C. Oliver, G.M. Pharr: An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments, J. Mater. Res. 7(4) (1992), pp.1564-1583.
DOI: 10.1557/jmr.1992.1564
Google Scholar
[2]
M. Sakai: Energy Principle Of The Indentation Induced Inelastic Surface Deformation And Hardness Of Brittle Materials, Acta Mater. 41(6) (1993), pp.1751-1758.
DOI: 10.1016/0956-7151(93)90194-w
Google Scholar
[3]
S. Suresh, A.E. Giannakopoulos: Determination of Elastoplastic Properties by Sharp Indentation, Scripta Mater. 40(10) (1999) pp.1191-1198.
DOI: 10.1016/s1359-6462(99)00011-1
Google Scholar
[4]
B. Taljat, T. Zacharia and F. Kosel: New Analytical Procedure to Determine Stress-Strain Curve from Spherical Indentation Data, International J. Solids Struct. 35(33) (1998), pp.4411-4426.
DOI: 10.1016/s0020-7683(97)00249-7
Google Scholar
[5]
J.S. Field, M.V. Swain: A Simple Predictive Model for Spherical Indentation, J. Mater. Res. 8(2) (1993), pp.297-306.
DOI: 10.1557/jmr.1993.0297
Google Scholar
[6]
B. N. Lucas, W. C. Oliver and J. E. Swindman: The Dynamics of Frequency-Specific, Depth-sensing Indentation Testing, MRS Symp. Proc. 522 (1998), pp.3-14.
DOI: 10.1557/proc-522-3
Google Scholar
[7]
A.C. Fischer-Cripps, in: Nanoindentation, Springer, New York (2004).
Google Scholar
[8]
T.F. Page, G.M. Pharr, J.C. Hay, W.C. Oliver, B.N. Lucas, E. Herbert and L. Riester: Nanoindentation Characterization of Coated Systems: P/S2 - A New Approach Using the Continuous Stiffness Technique, MRS Symp. Proc. 522 (1998), pp.53-64.
DOI: 10.1557/proc-522-53
Google Scholar
[9]
A.K. Bhattacharya, W.D. Nix: Finite element simulation of Indentation Experiments, Int. J. Solids Struct. 24(12) (1998), pp.1287-1298.
Google Scholar
[10]
P.J. Burnett, T.F. Page: Changing the surface mechanical properties of silicon by ion implantation, J. Mat. Res. 19 (1984), pp.845-860.
Google Scholar
[11]
P.J. Burnett, D.S. Rickerby: The mechanical properties of wear-resistance coatings I: Modeling of hardness behaviour, Thin Solid Films 148 (1987), pp.41-50.
DOI: 10.1016/0040-6090(87)90119-2
Google Scholar
[12]
P.J. Burnett, D. S Rickerby: The mechanical properties of wear-resistance coatings II: Experimental studies and interpretation of hardness, Thin Solid Films 148 (1987), pp.51-65.
DOI: 10.1016/0040-6090(87)90120-9
Google Scholar
[13]
S.J. Bull, D.S. Rickerby: Evaluation of coatings, Bri. Ceram. Trans. J. 88 (1989), pp.177-183.
Google Scholar
[14]
B.D. Fabes, W.C. Oliver, R.A. McKee and F.J. Walker: The determination of film hardness from the composite response of film and substrate to nanometer scale indentations, J. Mat. Res. 7(11) (1992), pp.3056-3064.
DOI: 10.1557/jmr.1992.3056
Google Scholar
[15]
N.G. Chechenin, J. Bottiger and J.P. Krog: Nanoindentation of amorphous aluminum oxide films I. The influence of the substrate on the plastic properties, Thin Solid Films 261 (1995), pp.219-227.
DOI: 10.1016/s0040-6090(94)06490-3
Google Scholar
[16]
P.J. Wei, J.F. Lin: A new method developed to evaluate both the hardness and elastic modulus of a coating-substrate system, Surf. Coat. Tech. 200 (2005), pp.2489-2496.
DOI: 10.1016/j.surfcoat.2004.09.013
Google Scholar
[17]
I.N. Sneddon: The relation between load and penetration in the axisymmetric boussinesq problem for a punch of arbitrary profile, Int. J. Eng. Sci. 3 (1965), pp.47-57.
DOI: 10.1016/0020-7225(65)90019-4
Google Scholar
[18]
A.H.W. Nagn, B. Tang: Viscoelastic effects during unloading in depth -sensing indentation, J. Mater. Res. 17(10) (2002), pp.2604-2610.
DOI: 10.1557/jmr.2002.0377
Google Scholar
[19]
M. L. Oyen, R. F. Cook: Load-displacement behavior during sharp indentation of viscous-elastic-plastic materials, J. Mater. Res. 18(1) (2003), pp.139-150.
DOI: 10.1557/jmr.2003.0020
Google Scholar
[20]
Y. W. Zhang, S. Yang: Analysis of nanoindentation creep for polymeric materials, J. Appl. Phys. 95(7) (2004), pp.3655-3666.
Google Scholar