Energy Comparisons of the Adaptive Tracking Control for a Linear Drive System

Article Preview

Abstract:

In this paper, a mechatronic motor-table system is realized to plan the minimum input electrical energy trajectory (MIEET) based on Hamiltonian function. In this system, the adaptive tracking controller is designed to track the MIEET to overcome the nonlinear friction and external disturbance. Moreover, trapezoidal trajectory (TT) and regulator control are compared with the MIEET by the adaptive tracking controller. Finally, it is concluded that the MIEET based on the adaptive tracking controller can obtain the minimum input electrical energy and robustness performance for the mechatronic motor table system.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

602-606

Citation:

Online since:

May 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] F. J. Lin, R. F. Fung and Y. S. Lin: 1997, Adaptive control of slider-crank mechanism motion: simulations and experiments, International Journal of Systems Science, 28(12): 1227-1238.

DOI: 10.1080/00207729708929480

Google Scholar

[2] C. W. Chuang, M. S. Huang, K. Y. Chen and R. F. Fung: 2008, Adaptive vision-based control of a motor-toggle mechanism: Simulations and experiments, Journal of Sound and Vibration, 312: 848–861.

DOI: 10.1016/j.jsv.2007.11.019

Google Scholar

[3] E. Polar and M. Deparis: 1969, An algorithm for minimum energy control, IEEE TRASSACTIONS ON AUTOMATIC CONTROL, AC-14(4): 367-377.

DOI: 10.1109/tac.1969.1099224

Google Scholar

[4] Y. E. Sahinkata and R. Asami: 1972, Minimum-Energy Control of a Class of: Electrically Driven Vehicles, IEEE TRANSACTIONS ON AUTOMATIC CONTROL, AC-17: 1-6.

DOI: 10.1109/tac.1972.1099911

Google Scholar

[5] P. Kokotovic and G. Singh: 1972, Minimum-energy control of a traction motor, IEEE TRANSACTIONS ON AUTOMATIC CONTROL, SHORT PAPERS: 92-95.

DOI: 10.1109/tac.1972.1099870

Google Scholar

[6] M. S. Huang, K. Y. Chen and R. F. Fung: 2010, Comparison between mathematical modeling and experimental identification of a spatial slider–crank mechanism, Applied Mathematical Modelling, 34: 2059–(2073).

DOI: 10.1016/j.apm.2009.10.018

Google Scholar

[7] R. F. Fung, Y. L. Hsu and M. S. Huang: 2009, System identification of a dual-stage XY precision positioning table, Precision Engineering, 33: 71-80.

DOI: 10.1016/j.precisioneng.2008.04.002

Google Scholar

[8] R. F. Fung and W. C. Lin: 2010, System Identification and Contour Tracking of a Plane-Type 3-DOF (X, Y, θz) Precision Positioning Table, IEEE Transactions on Control Systems Technology, 18(1): 22–34.

DOI: 10.1109/tcst.2008.2009528

Google Scholar

[9] R. F. Fung and W. C. Lin: 2009, System Identification of a Novel 6-DOF Precision Positioning Table, SENSORS AND ACTUATORS A: PHYSICAL, 150(2): 286-295.

DOI: 10.1016/j.sna.2009.01.007

Google Scholar

[10] J. Davila, L. Fridman and A. Levant: 2005, Second-Order Sliding-Mode Observer for Mechanical Systems, " IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 50 (11): 1785-1789.

DOI: 10.1109/tac.2005.858636

Google Scholar