[1]
H. Mannila, H. Toivonen and A. I. Verkamo: Discovery of Frequent Episodes in Event Sequences, Data Mining and Knowledge Discovery, Vol. 1 (1997), p.259–289.
DOI: 10.1023/a:1009748302351
Google Scholar
[2]
K. Hwang, M. Cai, Y. Chen and M. Qin: Hybrid Intrusion Detection with Weighted Signature Generation over Anomalous Internet Episodes, IEEE Transactions on Dependable and Secure Computing, Vol. 4, No. 1 (2007), pp.41-55.
DOI: 10.1109/tdsc.2007.9
Google Scholar
[3]
J. Luo and S. M. Bridges: Mining Fuzzy Association Rules and Fuzzy Frequent Episodes for Intrusion Detection, International Journal of Intelligent Systems, Vol. 15, Issue 8 (2000), pp.687-703.
DOI: 10.1002/1098-111x(200008)15:8<687::aid-int1>3.0.co;2-x
Google Scholar
[4]
B. Caswell, J. Beale, J. C. Foster and J. Faircloth: Snort 2. 0 Intrusion Detection, Syngress Press, 2003 (also refer to http: /www. snort. org/).
DOI: 10.1016/b978-193183674-6/50017-8
Google Scholar
[5]
J. Luo, S. M. Bridges, R. B. Vaughn and Jr: Fuzzy Frequent Episodes for Real-Time Intrusion Detection, in the Proceedings of the IEEE International Conference on Fuzzy Systems, Vol. 1 (2001), pp.368-371.
DOI: 10.1109/fuzz.2001.1007325
Google Scholar
[6]
W. Lee, S.J. Stolfo and K. W. Mok: Adaptive Intrusion Detection: A Data Mining Approach, Artificial Intelligence Review, Vol. 14, No. 6 (2000), pp.533-567.
Google Scholar
[7]
KeyFocus Ltd., KFSensor - Advanced Windows Honeypot System, http: /www. keyfocus. net/kfsensor.
Google Scholar
[8]
Kaspersky Lab., http: /www. viruslist. com/en/analysis?pubid=204791921.
Google Scholar
[9]
SMB Command Codes, http: /timothydevans. me. uk/nbf2cifs/smb-smbcommandcode. html.
Google Scholar
[10]
M. Y. Su: Internet Worms Identification through Serial Episodes Mining, in the Proceedings of the ECTI-CONF (2010), pp.132-136.
Google Scholar
[11]
Wan Ling Chen and Chengqi Zhang: Mining Frequent Serial Episodes over Uncertain Sequence Data, in the Proceedings of the ACM EDBT/ICDT joint conference (2013).
DOI: 10.1145/2452376.2452403
Google Scholar
[12]
Shukuan Lin, Jianzhong Qiao and Ya Wang, Frequent Episode Mining within the Latest Time Windows Over Event Streams, Applied Intelligence, Vol. 40, Issue 1 (2014), pp.13-28.
DOI: 10.1007/s10489-013-0442-8
Google Scholar