[1]
Kumbhar NT, Bhanumurthy K. Friction stir welding of AI 6061 alloy. Asian J Exp Sci 2008: 22: 63-74.
Google Scholar
[2]
M.K. Sued, D. Pons. Design features for bobbin friction stir weldoing tools: Development of a conceptual model linking the underlying physics to the production process. Materials and design 54: 632-643.
DOI: 10.1016/j.matdes.2013.08.057
Google Scholar
[3]
Mishra RA. Ma ZY. Friction stir welding and processing. Mater Sci Eng: R: Rep 2005; 50: 1-78.
Google Scholar
[4]
M. Sharifitabar, A. Sarani. Fabrication of 5052Al/Al2O3 nanoceramic particle reinforced composite via friction stir processing route. Materials and design 32: 4164-4172.
DOI: 10.1016/j.matdes.2011.04.048
Google Scholar
[5]
Beytullah Gungor, Erdinc Kaluc. Mechanical, fatigue and microstructural properties of friction stir welded 5083-H111 and 6082-T651 aluminum alloys. Materials and design 56: 84-90.
DOI: 10.1016/j.matdes.2013.10.090
Google Scholar
[6]
Chi-Sung JEON. Sung-Tae HONG. Mechanical Properties of friction stir spot welded joints of dissimilar aluminum alloys. Trans. Nonferrous Met. Soc. China 22: s604-s613.
DOI: 10.1016/s1003-6326(12)61772-5
Google Scholar
[7]
C.M. Chen, R. Kovacevic. Finite element modeling of friction stir welding—thermal and thermomechanical analysis. International Journal of Machine Tools & Manufacture 43 (2003) 1319–1326.
DOI: 10.1016/s0890-6955(03)00158-5
Google Scholar
[8]
C. Dalle Donne, G. Biallas, T. Ghidini, G. Raimbeaux, Effect of welding imperfections and residual stresses on the fatigue crack propagation in friction stir welded joints, in: Second International Symposium on Friction Stir Welding, Gothenburg, Sweden, 26– 28 June, (2000).
DOI: 10.1108/aa.2000.03320bab.005
Google Scholar
[9]
F. Zucchi, G. Trabanelli, V. Grassi, Pitting and stress corrosion cracking resistance of friction stir welded AA 5083, Materials Corrosion 52 (11) (2001) 853–859.
DOI: 10.1002/1521-4176(200111)52:11<853::aid-maco853>3.0.co;2-1
Google Scholar
[10]
M.K. Sued, D. Pons, Design features for bobbin friction stir welding tools: Development of a conceptual model linking the underlying physics to the production process: Materials and Design 54 (2014) 632–643.
DOI: 10.1016/j.matdes.2013.08.057
Google Scholar
[11]
Neumann T, Zettler R, Vilaca P, dos Santos JF, Quintino L. Analysis of self reacting friction stir welds in a 2024-T351 alloy. Friction Stir Weld Process IV 2007: 55–72.
Google Scholar
[12]
Hattingh DG, Blignault C, van Niekerk TI, James MN. Characterization of the influences of FSW tool geometry on welding forces and weld tensile strength using an instrumented tool. J Mater Process Technol 2008; 203: 46–57.
DOI: 10.1016/j.jmatprotec.2007.10.028
Google Scholar
[13]
Arora A, De A, Debroy T. Toward optimum friction stir welding tool shoulder diameter. Scripta Mater 2011; 64: 9–12.
DOI: 10.1016/j.scriptamat.2010.08.052
Google Scholar
[14]
Boz M, Kurt A. The influence of stirrer geometry on bonding and mechanical properties in friction stir welding process. Mater Des 2004; 25: 343–7.
DOI: 10.1016/j.matdes.2003.11.005
Google Scholar
[15]
McClure JC, Coronado E, Aloor S, Nowak BM, Murr LE, Nunes AC. Effect of pin tool shape on metal flow during friction stir welding. In: Trends in welding research, proceedings; 2003. p.257–61.
Google Scholar
[16]
Y-h Zhao, Lin S-b WuL, F-x Qu. The influence of pin geometry on bonding and mechanical properties in friction stir weld 2014 Al alloy. Mater Lett 2014; 2005(59): 2948–52.
DOI: 10.1016/j.matlet.2005.04.048
Google Scholar
[17]
Vijay SJ, Murugan N. Influence of tool pin profile on the metallurgical and mechanical properties of friction stir welded Al-10 wt. % TiB2 metal matrix composite. Mater Des 2010; 31: 3585–9.
DOI: 10.1016/j.matdes.2010.01.018
Google Scholar
[18]
Taban E, Kaluc E. Comparison between microstructure characteristics and joint performance of 5086–H32 aluminium alloy welded by MIG, TIG and friction stir welding processes. Met Mater 2007; 45: 262–9.
DOI: 10.4149/km_2013_3_197
Google Scholar
[19]
Kumbhar NT, Bhanumurthy K. Friction stir welding of Al 6061 alloy. Asian J Exp Sci 2008; 22: 63–74.
Google Scholar
[20]
Mishra RS, Ma ZY. Friction stir welding and processing. Mater Sci Eng: R: Rep 2005; 50: 1–78.
Google Scholar
[21]
Chen CM, Kovacevic R. Finite element modeling of friction stir welding—thermal and thermomechanical analysis. Int J Mach Tools Manuf 2003; 43: 1319–26.
DOI: 10.1016/s0890-6955(03)00158-5
Google Scholar