[1]
W.D. Scott, Vinyl Ester/Cenosphere composite materials for civil and structural engineering, Fiber Reinforced Polymer International, 2(3) (2005) 2-5.
Google Scholar
[2]
R.J. Cardoso, A. Shukla, A. Bose, Effect of particle size and surface treatment on constitutive properties of polyester cenosphere composites, Journal of Materials Science, 37(3) (2002) 603-613.
Google Scholar
[3]
N. Axen, S. Hogmark, S. Jacobson, Friction and Wear Measurement Techniques. In: Bhushan B, Editor, Modern Tribology Handbook, CRC Press, LLC, London, 1 (2001) 493-510.
Google Scholar
[4]
M.S. Devi, V. Murugesan, K. Rengaraj et al., Utilization of fly ash as filler for unsaturated polyester resin, Journal of Applied Polymer Science, 69(7) (1998) 1385–1391.
DOI: 10.1002/(sici)1097-4628(19980815)69:7<1385::aid-app13>3.0.co;2-t
Google Scholar
[5]
M.P. Groover, Fundamentals of Modern Manufacturing Materials, Processes and Systems, Prentice Hall, New Jersey, (1996).
Google Scholar
[6]
D.P. Mondal, S. Das, N. Jha, Dry sliding wear behaviour of aluminum syntactic foam, Materials and Design, 30(7) ( 2009) 2563-2568.
DOI: 10.1016/j.matdes.2008.09.034
Google Scholar
[7]
M.V. Deepthi, M. Sharma, R.R.N. Sailaja, P. Anantha, P. Sampathkumaran, S. Seetharamu, Mechanical and thermal characteristics of high density polyethylene–fly ash cenospheres composites, Materials and Design, 31(2010) 2051-(2060).
DOI: 10.1016/j.matdes.2009.10.014
Google Scholar
[8]
S.R. Chauhan, S. Thakur, Effects of particle size, particle loading and sliding distance on the friction and wear properties of cenosphere particulate filled vinylester composites, Materials and Design, 51(2013) 398-408.
DOI: 10.1016/j.matdes.2013.03.071
Google Scholar
[9]
A. Das, K. Satapathy, Structural, thermal, mechanical and dynamic mechanical properties of cenosphere filled polypropylene composites, Materials and Design, 32 (2011)1477–1484.
DOI: 10.1016/j.matdes.2010.08.041
Google Scholar
[10]
N. Chand, P. Sharma, M. Fahim, Abrasive wear behavior of LDPE Filled with silane treated flyash cenospheres, Composite Interfaces, 18(7) (2011) 575–586.
DOI: 10.1163/156855411x612267
Google Scholar
[11]
N.S. Mohan, A. Ramachandra, S.M. Kulkarni, Influence of process parameters on cutting force and torque during drilling of glass–fiber polyester reinforced composites, Composite Structures, 71(2005) 407-413.
DOI: 10.1016/j.compstruct.2005.09.039
Google Scholar
[12]
R.L. Clark, M.D. Craven, R.G. Kander, Nylon 66/poly (vinyl pyrrolidone) reinforced composites: 2- Bulk mechanical properties and moisture effects, Composites Part A, 30(1) (1999) 37-48.
DOI: 10.1016/s1359-835x(98)00083-9
Google Scholar
[13]
J. Campos Rubio, T.H. Panzera, A.M. Abrão, P.E. Faria, J. P. Davim, Effects of high speed in the drilling of glass whisker-reinforced polyamide composites (PA66 GF30): statistical analysis of the roughness parameters, Journal of Composite Materials, 45 (2011).
DOI: 10.1177/0021998310381540
Google Scholar
[14]
D. Bhattacharya, D.P.W. Horrigan, A study of hole drilling in Kelvar composites, Composites Science and Technology, 58 (1998) 267-283.
DOI: 10.1016/s0266-3538(97)00127-9
Google Scholar
[15]
U.A. Khashaba, Delamination in drilling GFR thermoset composites, Composite Structures, 63 (2004) 313-327.
DOI: 10.1016/s0263-8223(03)00180-6
Google Scholar
[16]
C.C. Tsao, H. Hocheng, Effects of special drill bits on drilling-induced delamination of composite materials, International Journal of Machine Tools and Manufacture, 46(12-13) (2006) 1403-1416.
DOI: 10.1016/j.ijmachtools.2005.10.004
Google Scholar
[17]
J.P. Davim, J.C. Rubio, A.M. Abrão, A novel approach based on digital image analysis to evaluate the delamination factor after drilling composite laminates, Composites Science and Technology, 67 (2007) 1939-(1945).
DOI: 10.1016/j.compscitech.2006.10.009
Google Scholar
[18]
J.P. Davim, P. Reis, V. Lapa, C.C. Antonio, Machinability study on polyetheretherketone (PEEK) unreinforced and reinforced (GF30) for application in structural components. Composite Structures, 62 (2003) 67-73.
DOI: 10.1016/s0263-8223(03)00085-0
Google Scholar
[19]
E. Aoyama, H. Nobe, T. Hirogaki, Drilled hole damage of small diameter in printed wiring board, Journal of Materials Processing Technology, 118 (2001) 436-441.
DOI: 10.1016/s0924-0136(01)00874-3
Google Scholar
[20]
H. Guu, H. Hocheng, N.H. Tai, S.Y. Liu, Effect of electrical discharge machining on the characteristics of carbon fiber reinforced carbon composites, Journal of Materials Science, 36 (2001) 2037-(2043).
DOI: 10.1023/a:1017539100832
Google Scholar
[21]
K. Palanikumar, L. Karunamoorthy, N. Manoharan, Mathematical model to predict the surface roughness on the machining of glass fiber reinforced polymer composites, Journal of Reinforced Plastics and Composites, 25 (2006) 407-417.
DOI: 10.1177/0731684405060568
Google Scholar
[22]
E. Persson, I. Eriksson, L. Zackrisson, Effect of hole machining defects on strength and fatigue life of composite laminates, Composites Part A, 28(2) (1997) 141-151.
DOI: 10.1016/s1359-835x(96)00106-6
Google Scholar
[23]
S.C. Lin, I.K. Chen, Drilling of carbon fiber-reinforced composite material at high speed, Wear 194 (1996) 156-162.
DOI: 10.1016/0043-1648(95)06831-7
Google Scholar
[24]
V.N. Gaitonde, S.R. Karnik, J.C. Rubio, A.E. Correia, A.M. Abrão, J.P. Davim, Analysis of parametric influence on delamination in high-speed drilling of carbon fiber reinforced plastic composites, Journal of Materials Processing Technology, 203 (2008).
DOI: 10.1016/j.jmatprotec.2007.10.050
Google Scholar
[25]
S.R. Karnik, V.N. Gaitonde, .C. Rubio, A.E. Correia, A.M. Abrão, J.P. Davim, Delamination analysis in high-speed drilling of carbon fiber reinforced plastics (CFRP) using artificial neural network model, Materials and Design, 29 (2008) 1768-1776.
DOI: 10.1016/j.matdes.2008.03.014
Google Scholar
[26]
V. Krishnaraj, A. Prabhukarthi, A. Ramanathan, N. Elanghovan, M. Senthil Kumar, R. Zitoune, J.P. Davim, Optimisation of machining parameters at high speed drilling of Carbon Fiber Reinforced Plastic (CFRP) laminates, Composites Part B, 43 (2012: )1791-1799.
DOI: 10.1016/j.compositesb.2012.01.007
Google Scholar
[27]
C.C. Tsao, H. Hocheng, Evaluation of thrust force and surface roughness in drilling composite material using Taguchi analysis and neural network, Journal of Materials Processing Technology, 203 (2008) 342–348.
DOI: 10.1016/j.jmatprotec.2006.04.126
Google Scholar
[28]
R. Zitoune, V. Krishnaraj, F. Collombet, Study of drilling of composite material and aluminium stack, Composite Structures, 92(5) (2010) 1246-1255.
DOI: 10.1016/j.compstruct.2009.10.010
Google Scholar
[29]
D.C. Montgomery, Design and Analysis of Experiments, John Wiley and Sons, New York, (2003).
Google Scholar
[30]
R.H. Myers, D.C. Montgomery, C.M. Anderson-Cook, Response Surface Methodology, John Wiley and Sons, Inc., New Jersey, (2009).
Google Scholar
[31]
D. Chandramohan, K. Marimuthu, Drilling of natural fiber particle reinforced polymer composite material, International Journal of Advanced Engineering Research and Studies, 1(1) (2011) 134-145.
Google Scholar
[32]
S. Basavarajappa, A. Venkatesh, V.N. Gaitonde, S.R. Karnik, Experimental investigations on some aspects of machinability in drilling of glass epoxy polymer composites, Journal of Thermoplastic Composite Materials, 25(3) (2012); 363-387.
DOI: 10.1177/0892705711408166
Google Scholar
[33]
C.C. Tsao, H. Hocheng, Evaluation of thrust force and surface roughness in drilling composite material using Taguchi analysis and neural network, Journal of Materials Processing Technology, 203 (2008) 342–348.
DOI: 10.1016/j.jmatprotec.2006.04.126
Google Scholar