[1]
H.Y. Chen, A.J. Li, D.E. Finlow, The lead and lead-acid battery industries during 2002 and 2007 in China, J. Power Sources. 191 (2009) 22–27.
DOI: 10.1016/j.jpowsour.2008.12.140
Google Scholar
[2]
X.F. Zhu, L. Li, X.J. Sun, et al. Preparation of basic lead oxide from spent lead-acid battery paste via chemical conversion, J. Hydrometallurgy. 117-118 (2012) 24–31.
DOI: 10.1016/j.hydromet.2012.01.006
Google Scholar
[3]
H.W. Zhou, Characters of the waste lead acid storage battery and its melting technology options, J. Resour Recycl. 5 (2007) 9–22.
Google Scholar
[4]
X. Zhu, L. Li, X. Sun, et al, Preparation of basic lead oxide from spent lead acid battery paste via chemical conversion, J. Hydrometallurgy. 117 (2001)24-31.
DOI: 10.1016/j.hydromet.2012.01.006
Google Scholar
[5]
X.J. Sun, J.K. Yang, W. Zhang, Lead acetate tri-hydrate precursor route to synthesize novel ultrafine lead oxide from spent lead acid battery pastes, J. Journal of Power Sources. 269 (2014) 565-576.
DOI: 10.1016/j.jpowsour.2014.07.007
Google Scholar
[6]
L.Q. Wang, X.B. Liu, An analysis of the corrosion level of grids of lead-acid battery, J. Chinese LABAT Man. 49 (2012) 31-33.
Google Scholar
[7]
D. Pavlov, V. Naidenova, S. Ruevskia, et al, New modified AGM separator and its influence on the performance of VRLA batteries, J. Journal of Power Sources. 113 (2003) 209-227.
DOI: 10.1016/s0378-7753(02)00516-5
Google Scholar
[8]
J. C, J.H. Xu, Mechanism and detection of the failure of VRLA, J. Chinese Journal of Power Sources. 23 (1999) 332-334.
Google Scholar
[9]
C.Y. Jie, Failure Analysis and Countermeasures of VRLA in substations, J. Low Carbon World. 8 (2013) 32-34.
Google Scholar
[10]
L.T. Tao, Failure mechanisms and testing of lead-acid batteries, J. Urban Construction Theory Research. 26 (2011) 54-55.
Google Scholar
[11]
R.Z. Wei, Failure mechanisms of lead-acid batteries, J. Chinese Journal of Power Sources. 19 (1995) 41-44.
Google Scholar
[12]
W.W. Zhang, G.Y. Pan, Y. Wang, S. Xie, Current status and trends of separator technology for lead-acid batteries, J. 42 (2005) 88-92.
Google Scholar
[13]
L.C. Wang, H.C. Corp, M.K. Harvey, H.L. Stein, The role of UHMW-PE in microporous PE separators, C. Battery Conference on Applications and Advances. (1997) 69-71.
DOI: 10.1109/bcaa.1997.574080
Google Scholar
[14]
Z.X. Chen, Y.H. Li, K.C. Liu, G.S. Zheng, Y.J. Zhang, Discussion on short circuit of PE separators for lead acid batteries, J. Chinese LABAT Man. 4 (2010) 154-157.
Google Scholar
[15]
H.Y. Wang, Application and maintenance of VRLA, J. Liaoning Radio & TV Broadcast Engineering. 1 (2009) 40-42.
Google Scholar
[16]
R.Y. Zhang, Aging mechanisms and anti-aging mechanism of PVC products, J. Journal of Henan Polytechnic University. 6 (1996) 89-93.
Google Scholar
[17]
A. Demcenko, P.B. Nagy, et al, Non-collinear wave mixing for non-linear ultrasonic detection of physical ageing in PVC, J. NDT & E International. 49 (2012) 34-39.
DOI: 10.1016/j.ndteint.2012.03.005
Google Scholar
[18]
Y. Nakayama, K. Kishimotoa, S. Sugiyamab, S. Sakaguchib, Micro-structural design and function of an improved absorptive glass mat (AGM) separator for valve-regulated lead-acid batteries, J. Journal of Power Sources. 107 (2002) 192-200.
DOI: 10.1016/s0378-7753(01)01005-9
Google Scholar
[19]
N. Clement, Use of synthetic fibre reinforcement for improving the performance of AGM separators for VRLA batteries, J. Journal of Power Sources. 133 (2004) 87-93.
DOI: 10.1016/j.jpowsour.2003.11.030
Google Scholar
[20]
H.Y. Chen, Z.Z. Huang, Investigation and application of absorpitve glass mat, J. Chinese LABAT Man. 2 (1996) 3-9.
Google Scholar
[21]
S.Z. Liu, S.Y. Jiang, Analysis of the reason for premature failure of VRLA batteries, J. Chinese LABAT Man. 4 (1997) 16-26.
Google Scholar
[22]
J.Z. Hou, Analysis of lead-acid battery invalidation and the idea of monitoring program, J. Telecom Power Technologies. 31 (2014) 64-65.
Google Scholar
[23]
D. Pavlov, P. Nikolov, T. Rogachev, Application of WC electrodes in stationary batteries, J. Power Sources, 195 (2010) 4435–4443.
Google Scholar
[24]
M. Saravanan, M. Ganesan, S. Ambalavanan. An in-situ generated carbon as integrated conductive additive for hierarchical negative plate of lead-acid battery, J. Journal of Power Sources, 251 (2014) 20-29.
DOI: 10.1016/j.jpowsour.2013.10.143
Google Scholar
[25]
H.A. Catherino, F.F. Feres, F. Trinidad, Sulfation in lead-acid batteries, J. Journal of Power Sources. 129 (2004) 113-120.
DOI: 10.1016/j.jpowsour.2003.11.003
Google Scholar
[26]
F.G. Wang, Y. Zhang, Recovery technique of VRLA, J. Power Supply Technologles and Applications. 8 (2005) 53-54.
Google Scholar
[27]
Z.G. Qian, L. Guo, Sulfation of lead-acid battery, J. Marine Electric & Electric Technology. 5 (2005) 42-45.
Google Scholar
[28]
S. J . Wang, J.P. Xiong, Y. Zuo, Study on aging mechanism of rubbers, J. Synthetic Materials Aging and Application. 38 (2009) 23-33.
Google Scholar
[29]
G. Fan, Study on aging of vehicle rubber product, J. Automobile Science and Technology. 1 (2003) 17-27.
Google Scholar
[30]
B.C. Deng, The principle of rubber technology, M. Chemical Industry Press, China, (1984).
Google Scholar