[1]
G. Tchobanoglous, R. Eliaseen, H. Theisen, Solid Waste Engineering Principles and Management, 1st edition, McGraw Hill, Tokyo, (1977).
Google Scholar
[2]
M . Jalili-Ghazizadeh, R. Noori, Prediction of municipal solid waste generation by use of artificial neural network: a case study of Mashhad, Int. J. Environ. Res. 2 (2008) 22-33.
Google Scholar
[3]
A.M. Kalteh, Monthly river flow forecasting using artificial neural network and support vector regression models coupled with wavelet transform, Comput. Geosci. 54 (2013) 1–8.
DOI: 10.1016/j.cageo.2012.11.015
Google Scholar
[4]
D. Broadhurst, R. Goodacre, A. Jones, J. Rowland, D.B. Kell, Genetic algorithms as a method for variable selection in multiple linear regression and partial least squares regression, with applications to pyrolysis mass spectrometry, Anal. Chim. Acta. 348 (1997).
DOI: 10.1016/s0003-2670(97)00065-2
Google Scholar
[5]
B. Bounsan, W.Y. Chen, H.W. Chen, Y.H. Chuang, N. Grisdanurak, Modeling the dioxin emission of municipal solid waste incinerator using neural networks, Chemosphere, 92 (2013) 258-264.
DOI: 10.1016/j.chemosphere.2013.01.083
Google Scholar
[6]
Y.X. Zhang, Artificial neural networks based on principal component analysis input selection for clinical pattern recognition analysis, Talanta, 73 (2007) 68-75.
DOI: 10.1016/j.talanta.2007.02.030
Google Scholar
[7]
Y. Zhang, H. Li, A. Hou, J. Havel . Artificial neural networks based on principal component analysis input selection for quantification in overlapped capillary electrophoresis peaks, Chemom. Intell. Lab. Sys. 82 (2006) 165-175.
DOI: 10.1016/j.chemolab.2005.08.012
Google Scholar
[8]
D.J. Choi, H. Park. A hybrid artificial neural network as a software sensor for optimal control of a wastewater treatment process, Water Res. 35 (2001) 3959-3967.
DOI: 10.1016/s0043-1354(01)00134-8
Google Scholar
[9]
W.Z. Lu, W.J. Wang, X.K. Wang, Z.B. Xu, A.Y.T. Leung, Using improved neural network to analyze RSP, NOX and NO2 levels in urban air in Mong Kok, Hong Kong, Environ. Monit. Assess. 87 (2003) 235-254.
Google Scholar
[10]
G.B. Sahoo, C. Ray, E.H. Decarlo, Use of neural network to predict flash flood and attendant water qualities of a mountainous stream on Oahu, Hawaii, J. Hydrol. 327 (2006) 525-538.
DOI: 10.1016/j.jhydrol.2005.11.059
Google Scholar
[11]
Information on http: /www. wmo. mashhad. ir.
Google Scholar
[12]
S. Haykin, Neural Networks, A Comprehensive Foundation. Macmillan, New York, (1994).
Google Scholar
[13]
S.M. Bateni, S.M. Borghei, D.S. Jeng, Neural network and neuro-fuzzy assessment for scour depth around bridge piers, J. Eng. Appl. Artif. Intel. 20 (2007) 401-414.
DOI: 10.1016/j.engappai.2006.06.012
Google Scholar
[14]
S.M. Bateni, D.S. Jeng, B.W. Melville, Bayesian neural networks for prediction of equilibrium and time-dependent scour depth around bridge piers, Adv. Eng. Softw. 38 (2007) 102-111.
DOI: 10.1016/j.advengsoft.2006.08.004
Google Scholar
[15]
P. Coulibaly, F. Anctil, B. Bobee, Daily reservoir inflow forecasting using artificial neural networks with stopped training approach, J. Hydrol. 230 (2000) 244-257.
DOI: 10.1016/s0022-1694(00)00214-6
Google Scholar
[16]
H. Camdevyren, N. Demyr, A. Kanik, S. Keskyn, Use of principal component scores in multiple linear regression models for prediction of Chlorophyll-a in reservoirs, Ecol. Modell. 181 (2005) 581-589.
DOI: 10.1016/j.ecolmodel.2004.06.043
Google Scholar
[17]
B. Helena, R. Pardo, M. Vega, E. Barrado, Temporal evolution of groundwater composition in an alluvial aquifer (Pisuerga river, Spain) by principal component analysis, Water. Res. 34 (2000) 807-816.
DOI: 10.1016/s0043-1354(99)00225-0
Google Scholar
[18]
J.C. Davis, Statistical and Data Analysis in Geology, 2nd ed., John Wiley & Sons., New York, (1986).
Google Scholar
[19]
B.G. Tabachnick, L.S. Fidell, Using Multivariate Statistics, 3rd edition, Allyn and Bacon, Boston, London, (2001).
Google Scholar
[20]
H. Wackernagel, Multivariate Geostatistics, An Introduction With Applications, 2nd edition, Springer, New York and London, (1995).
Google Scholar
[21]
M.A. Cardoso, L.J. Sarma, Development and application of reduced-order modeling procedures for subsurface flow simulation, Int. J. Numer. Meth. Eng. 77 (2009) 1322-1350.
DOI: 10.1002/nme.2453
Google Scholar