Fiber-Reinforced Composites in Rapid Prototyping Technologies

Article Preview

Abstract:

In a modern market economy, rapidly developing production requires a significant reduction of term for development and production of new products, ensuring competitiveness and growth of technical and economic performance while minimizing costs. This led to the idea of using rapid prototyping technology which today is focused on the use of composites. This paper gives a brief description of composites formed using the basic processes of rapid prototyping. The main attention is directed to the methods of forming fiber-reinforced composites.

You might also be interested in these eBooks

Info:

* - Corresponding Author

[1] P.K. Jain , K. Senthilkumaran, P.M. Pandeyand, P.V.M. Rao, Tailoring Material Properties in Layered Manufacturing, J. Materials and Design. 31 (2010) 3490-3498.

DOI: 10.1016/j.matdes.2010.02.029

Google Scholar

[2] A. V. Valter, Modeling of Track Overlapping Effect on Layer Integrity in the Process of Laser Sintering of Polymer Suspension, 7th International Forum on Strategic Technology (IFOST - 2012) Tomsk. 2 (2012) 125-128.

DOI: 10.1109/ifost.2012.6357708

Google Scholar

[3] A.A. Lysenko, V.A. Lysenko, P.Y. Salnikova, Studies of carbon fiber materials – precursors for porous carbon, Krasnodar: Membrane Institute KubSU, (2009).

Google Scholar

[4] S. Kumar, J. -P. Kruth, Composites by rapid prototyping technology, J. Materials and Design. 31 (2010) 850-856.

DOI: 10.1016/j.matdes.2009.07.045

Google Scholar

[5] D. V. Valuev , V. I. Danilov, Reasons for Negative Formation of Structures in Carbon Steel Processing of Pressure, 7th International Forum on Strategic Technology (IFOST - 2012) Tomsk. 2 (2012) 151-154.

DOI: 10.1109/ifost.2012.6357714

Google Scholar

[6] C.M. Cheah, J.Y.H. Fuh, A.Y.C. Nee, L. Lu, Mechanical characteristics of fiber filled photo–polymer used in stereolithography, J. Rapid Prototyping Journal. 5 (1999) 112-119.

DOI: 10.1108/13552549910278937

Google Scholar

[7] G. Vaneetvelda, A. -M. Clarinval, T. Dormalb, J. -C. Nobenc, J. Lecomte-Beckersd, Optimization of the formulation and post-treatment of stainless steel for rapid manufacturing, J. journal of materials processing technology. 196 (2008) 160-164.

DOI: 10.1016/j.jmatprotec.2007.05.017

Google Scholar

[8] G Zak, M Haberer, CB Park, B Benhabib, Mechanical properties of short-fibre layered composites: prediction and experiment, J. Rapid Prototyping Journal. 6 (2000) 107-118.

DOI: 10.1108/13552540010323583

Google Scholar

[9] S. Kumar, Selective laser sintering: A qualitative and objective approach, J. JOM Journal of the Minerals, Metals and Materials Society. 55 (2003) 43-47.

DOI: 10.1007/s11837-003-0175-y

Google Scholar

[10] A. Mazzoli, G Moriconi, M.G. Pauri, Characterization of an aluminum-filled polyamide powder for applications in selective laser sintering, J. Materials and Design. 28 (2007) 993-1000.

DOI: 10.1016/j.matdes.2005.11.021

Google Scholar

[11] L. Weisensel, N. Travitzky, H. Sieber, P. Greil, Laminated Object Manufacturing (LOM) of SiSiC Composites, J. Adv Eng Mat. 6 (2004) 899-903.

DOI: 10.1002/adem.200400112

Google Scholar

[12] M.L. Shofner, K. Lozano, F.J. Rodriguez-Marcias, E. V Barrera, Nanofiber-reinforced polymers prepared by fused deposition modeling, J. App Poly Sci. 89 (2001) 3081-90.

DOI: 10.1002/app.12496

Google Scholar

[13] W. Liu, J. N. Dupont, Fabricationof functionally graded TiC/Ti composites by Laser Engineered Net Shaping, J. Scripta Materialia. 48 (2003) 1337-1342.

DOI: 10.1016/s1359-6462(03)00020-4

Google Scholar

[14] I. Gibson, D.W. Rosen, B. Stucker, Additive Manufacturing Technologies. Rapid Prototyping to Direct Digital Manufacturing, Springer, New York, (2009).

DOI: 10.1007/978-1-4939-2113-3

Google Scholar

[15] G.D. Janaki Ram, Y. Yang, and B.E. Stucker, Effect of process parameters on bond formation during ultrasonic consolidation of aluminum alloy 3003, J. Journal of Manufacturing Systems. 25 (2006) 221-238.

DOI: 10.1016/s0278-6125(07)80011-2

Google Scholar