Effect of Load Ratio on Fatigue Failure Micromechanisms of Railway Axle Steel

Article Preview

Abstract:

The paper presents the basic regularities of fatigue failure of the railway wheelset axle material – OsL steel (C - 0,40—0,48 %; Mn - 0,55—0,85 %; Si - 0,15—0,35 %; P < 0,04%; S < 0,045 %; Cr < 0,3 %; Ni < 0,3 %; Cu < 0,25 %). It was revealed that under loading stress ratio R = 0, fatigue crack growth is 2 ... 4 times lower than that at the asymmetry R = -1. In doing so, amplitude of stress intensity factor vary in the range of 20 – 35 MPa√m. The micromechanisms of fatigue crack growth are described and systematized, while physical-mechanical interpretations of the relief morphology at different stages of its growth are offered.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

209-215

Citation:

Online since:

June 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] M. Luke, I. Varfolomeev, K. Lutkepohl, A. Esderts, Fatigue crack growth in railway axles: Assessment concept, J. Eng. Fract. Mech. 78 (2011) 714-730.

DOI: 10.1016/j.engfracmech.2010.11.024

Google Scholar

[2] I. Le May, A.K. Koul, R.V. Daintyt, Fracture Mechanisms in a Series of Locomotive Axle Failures, J. Mat. Charact. 26 (1991) 235-251.

DOI: 10.1016/1044-5803(91)90015-v

Google Scholar

[3] S. Beretta, A. Ghidini, F. Lombardo, Fracture mechanics and scale effects in the fatigue of railway axles, J. Eng. Fract. Mech. 72 (2003) 195-208.

DOI: 10.1016/j.engfracmech.2003.12.011

Google Scholar

[4] H. Alihosseini, K. Dehghani, Modelling and failure analysis of a broken railway axle: effects of surface defects and inclusions, J. of Failure Anal. and Prevent. 10 (2010) 233-239.

DOI: 10.1007/s11668-010-9340-0

Google Scholar

[5] D.S. Hoddionott, Railway axle failure investigations and fatigue crack growth monitoring of an axle. Proceedings of the Institution of Mechanical Engineers, Part F: J. Journal of Rail and Rapid Transit, 2004, 218, 283-292.

DOI: 10.1243/0954409043125897

Google Scholar

[6] H. Tada, P.C. Paris, G.R. Irwin, The stress analysis of cracks handbook, Saint Louis, MO: Paris Productions Inc., (1985).

Google Scholar

[7] O. Yasniy, Y. Lapusta, Y. Pyndus, A. Sorochak, V. Yasniy, Assessment of lifetime of railway axle, J. Int. J. of Fatigue, 50 (2013) 40-46.

DOI: 10.1016/j.ijfatigue.2012.04.008

Google Scholar

[8] ASTM E647-13ae1, Standard Test Method for Measurement of Fatigue Crack Growth Rates, ASTM International, West Conshohocken, PA, (2013).

Google Scholar

[9] P.O. Maruschak, I.V. Konovalenko, E.V. Maruschak, A.P. Sorochak, Automated method for stereometric study of fatigue failure mechanisms, J. Metallurgist, 58 (2014) 43-47.

DOI: 10.1007/s11015-014-9866-6

Google Scholar

[10] K. Slamecka, J. Pokluda, P. Ponizil, S. Major, P. Sandera, On the topography of fracture surfaces in bending-torsion fatigue, J. Eng. Fract. Mech. 75 (2008) 760-767.

DOI: 10.1016/j.engfracmech.2007.01.018

Google Scholar

[11] P. Pokorny, L. Nahlik, P. Hutar, Influence of different crack propagation rate descriptions on the residual fatigue lifetime of railway axles, J. Key Eng. Mat. 627 (2015) 469-472.

DOI: 10.4028/www.scientific.net/kem.627.469

Google Scholar

[12] P.O. Maruschak, A.P. Sorochak, A. Menou, O.V. Maruschak Regularities in macro- and micromechanisms of fatigue crack growth in a bimetal of continuous caster rolls, J. Case Studies in Eng. and Fail. Anal. 1 (2013) 165–170.

DOI: 10.1016/j.csefa.2013.05.003

Google Scholar