[1]
W. Liu, D. Ren, S. Usui, J. Wadell, T.D. Marusich, A gear cutting predictive model using the finite element method, J. CIRP. 8 (2013) 51-56.
DOI: 10.1016/j.procir.2013.06.064
Google Scholar
[2]
M.S. Ostapenko, D.S. Vasilega, Method of evaluation of quality of metal-cutting tool, J. Applied Mechanics and Materials. 379 (2013) 49-55.
DOI: 10.4028/www.scientific.net/amm.379.49
Google Scholar
[3]
E.V. Artamonov, D.V. Vasil'ev, Determining the optimal cutting speed in turning by composite cutters on the basis of the chip, J. Russian Engineering Researh. 34 (6) (2014) 404-405.
DOI: 10.3103/s1068798x14060069
Google Scholar
[4]
E.V. Artamonov, V.V. Kireev, Effectiveness of cutting by hods with replaceable hard-alloy plates, J. Russian Engineering Research. 37 (7) (2014) 473-474.
DOI: 10.3103/s1068798x14070053
Google Scholar
[5]
E.V. Artamonov, D.S. Vasilega, A.M. Tveryakov, Determining the maximum-performance temperature of hard-alloy cutting plates, J. Russian Engineering Research. 34 (6) (2014) 402-403.
DOI: 10.3103/s1068798x14060057
Google Scholar
[6]
S. Steina, M. Lechthalera, S. Krassnitzera, K. Albrechta, A. Schindlerb, M. Arndta, Gear hobbing: A contribution to analogy testing and its wear mechanisms, J. CIRP. 1 (1) (2012) 220-225.
DOI: 10.1016/j.procir.2012.04.039
Google Scholar
[7]
T. Tokawa, Y. Nishimura, Y. Nakamura, High productivity dry hobbing system, J. Mitsubishi Heavy Industries. 38 (1) (2001) 27-31.
Google Scholar
[8]
B. Karpuschewski, H. -J. Knoche, M. Hipke, M. Beutner, High performance gear hobbing with powder-metallurgical high-speed-steel, J. CIRP. 1 (1) (2012) 196-201.
DOI: 10.1016/j.procir.2012.04.034
Google Scholar
[9]
G. Hyatt, M. Piber, N. Chaphalkar, O. Kleinhenz, M. Mori, A review of new strategies for gear production, J. CIRP. 14 (2014) 72-76.
DOI: 10.1016/j.procir.2014.03.034
Google Scholar
[10]
F. Klocke, M. Brumm, S. Herzhoff, Influence of gear design on tool load in bevel gear cutting, J. CIRP. 1 (1) (2012) 66-71.
DOI: 10.1016/j.procir.2012.04.010
Google Scholar