Optimization Approach in Identification Problems for Stationary Convection–Diffusion Model

Article Preview

Abstract:

Identification problems for linear stationary convection–diffusion model considered in bounded domain under Dirichlet boundary condition are studied. By optimization method these problems are reduced to respective control problems. The solvability of the control problems is proved, an optimality system describing necessary optimality conditions is derived, the numerical algorithm is developed.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

634-637

Citation:

Online since:

June 2015

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] O.M. Alifanov, E.A. Artyukhin, S.V. Rumyantsev, Extremal solutions of ill-posed problems and their applications to inverse heat transfer problems, Nauka, Moscow, (1988).

Google Scholar

[2] A.A. Samarskii, P.N. Vabishevich, Numerical methods for inverse problems in mathematical physics, Editorial URSS, Moscow, (2004).

Google Scholar

[3] G.V. Alekseev, D.A. Tereshko, Analysis and optimization in viscous fluid hydrodynamics, Dal'nauka, Vladivostok, (2008).

Google Scholar

[4] G.V. Alekseev, Solvability of stationary boundary control problems for thermal convection equations, J. Sib. Mat. Zh. 39 (1998) 982–998.

DOI: 10.1007/bf02672906

Google Scholar

[5] G.V. Alekseev, Stationary problems of boundary control for heat convection equations. J. Dokl. Math. 58 (1998) 314–317.

Google Scholar

[6] G.V. Alekseev, D.A. Tereshko, On solvability of inverse extremal problem for stationary equations of viscous heat conducting fluid. J. Journal of Inverse and Ill-Posed Problems. 6 (1998) 521-562.

DOI: 10.1515/jiip.1998.6.6.521

Google Scholar

[7] G.V. Alekseev, D.A. Tereshko, The stationary optimal control problems for the viscous fluid equations. J. Sib. J. Indust. Math. 1 (1998) 22–44.

Google Scholar

[8] G.V. Alekseev, Inverse extremal problems for stationary equations in mass transfer theory. Comput. J. Math. and Math. Phys. 42 (2002) 363–376.

Google Scholar

[9] H.C. Lee, Analysis and computational methods of Dirichlet boundary optimal control problems for 2D Boussinesq equations, J. Advan. Comput. Math. 19 (2003) 255–275.

Google Scholar

[10] G.V. Alekseev, Inverse extremum problems for stationary heat convection equations, J. Vestn. Novosibirsk. Univ. Ser. Mat. 6 (2006) 7–31.

Google Scholar

[11] H.C. Lee, Optimal control problems for the two dimensional Rayleigh–Benard type convection by a gradient method, J. Jpn. J. Ind. Appl. Math. 26 (2010) 93–121.

DOI: 10.1007/bf03167547

Google Scholar

[12] G.V. Alekseev, D.A. Tereshko, Two-parameter extremum problems of boundary control for stationary thermal convetction equations. J. Comput. Math. Math. Phys. 51 (2011) 1539-1557.

DOI: 10.1134/s096554251109003x

Google Scholar

[13] G.V. Alekseev, Coefficient inverse extremum problems for stationary heat and mass transfer equations, J. Comput. Math. Math. Phys. 47 (2007) 1007–1028.

DOI: 10.1134/s0965542507060115

Google Scholar

[14] G.V. Alekseev, Uniqueness stability in coefficient identificetion problems for a stationaly model of mass transfer, J. Dokl. Math. 76 (2007) 797–800.

DOI: 10.1134/s1064562407050390

Google Scholar

[15] G.V. Alekseev, O.V. Soboleva, D. A. Tereshko, Identification problems for a steady mass transfer model, J. Prikl. Mekh. Tekh. Fiz. 49 (2008) 24–35.

Google Scholar

[16] O.V. Soboleva, Inverse extremum problems for stationary convection–diffusion–reaction equation, J. Far. Eastern. Math. J. 10, 2 (2010) 170–184 [in Russian].

Google Scholar

[17] G.V. Alekseev, I.S. Vakhitov, O.V. Soboleva, Stability estimates in problems of identification for the equation of convection-diffusions-reactions, J. Comput. Math. and Math. Phys. 52 (2012) 1635-1649.

DOI: 10.1134/s0965542512120032

Google Scholar

[18] A.I. Korotkii, D.A. Kovtunov, Reconstruction of boundary regimes in the inverse heat convection problem for a highly viscous iquid, J. Trudy Inst. Mat. Mekh. 12 (2006) 88–97.

Google Scholar

[19] A. I. Korotkii, D. A. Kovtunov, Optimal boundary control of a system describing heat convection, Trudy Inst. Mat. Mekh. 16 (2010) 76–101.

Google Scholar

[20] Ju. Ya. Fershalov, T.V. Sazonov, Experimental research of the nozzles, J. Advan. Mater. Res. 345 (2014) 915–916.

DOI: 10.4028/www.scientific.net/amr.915-916.345

Google Scholar

[21] M. Yu. Fershalov, A. Yu. Fershalov, Yu. Ya. Fershalov Calculation of reactivity degree for axial lowaccount turbines with small emergence angles on nozzle devices. J. Advan. Mater. Res. 341 (2014) 915–916.

DOI: 10.4028/www.scientific.net/amr.915-916.341

Google Scholar

[22] Yu. Ya. Fershalov, Technique for physical simulation of gasodynamic processes in the turbomashine flow passages, J. Russian Aeronaut. 55 (2012) 424–429.

DOI: 10.3103/s1068799812040186

Google Scholar