Application of Multivariate EMD to Improve Quality VLF-EM Data: Synthetic and Fields Data

Article Preview

Abstract:

A method for enhancing VLF˗EM data based on Multivariate Empirical Mode Decomposition (EMD) was presented. The noise assisted multivariate empirical mode decomposition (NA-MEMD) approach to simultaneously decompose bivariate data.The NA-MEMD is applied to enhance bivariate VLF˗EM data. The method was also tested on a synthetic and two fields VLF-EM data sets. The results indicate that the filtered VLF˗EM data based on the NA-MEMD results better data and easier to interpret or further analyzed. In addition, the 2D resistivity profile result estimated from the inversion of filtered VLF˗EM data is appropriate to geological condition.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

170-173

Citation:

Online since:

July 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] D. P. Mandic, G. Souretis, W. Y. Leong, D. Looney, M. M. Van Hulle, T. Tanaka, Complex Empirical Mode Decomposition for Multichannel Information Fusion, in Signal Processing Techniques for Knowledge Extraction and Information Fusion, New York, USA: Springer, (2008).

DOI: 10.1007/978-0-387-74367-7_13

Google Scholar

[2] G. Rilling, P. Flandrin, P. Goncalves, J. M. Lilly, Bivariate empirical mode decomposition, IEEE Signal Process. Lett. 14(12) (2007) 936–939.

DOI: 10.1109/lsp.2007.904710

Google Scholar

[3] Sungkono, A. S. Bahri, D. D. Warnana, F. A. Monteiro Santos, B. J. Santosa, Fast, simultaneous and robust VLF-EM data denoising and reconstruction via multivariate empirical mode decomposition, Comput. Geosci. 67 (2014) 125–137.

DOI: 10.1016/j.cageo.2014.03.007

Google Scholar

[4] D. C. Fraser, Contouring of VLF-EM data, Geophysics 34(6) 1969 958–967.

DOI: 10.1190/1.1440065

Google Scholar

[5] M. Karous, S. E. Hjelt, Linear filtering of VLF dip-angle measurements, Geophys. Prospect. 31(5) (1983) 782–794.

DOI: 10.1111/j.1365-2478.1983.tb01085.x

Google Scholar

[6] F. A. M. Santos, A. Mateus, J. Figueiras, M. A. Gonçalves, Mapping groundwater contamination around a landfill facility using the VLF-EM method — A case study, J. Appl. Geophys. 60(2) (2006) 115–125.

DOI: 10.1016/j.jappgeo.2006.01.002

Google Scholar

[7] Y. Sasaki, Full 3-D inversion of electromagnetic data on PC, J. Appl. Geophys. 46(1) (2001) 45–54.

Google Scholar

[8] N. U. Rehman, D. P. Mandic, Filter bank property of multivariate empirical mode decomposition, IEEE Trans. Signal Process. 59(5) (2011) 2421–2426.

DOI: 10.1109/tsp.2011.2106779

Google Scholar

[9] N. U. Rehman, D. P. Mandic, Multivariate empirical mode decomposition, Proc. R. Soc. Math. Phys. Eng. Sci. 466(2117) (2010) 1291–1302.

DOI: 10.1098/rspa.2009.0502

Google Scholar

[10] Sungkono, A. S. Bahri, F. A. M. Santos, I. Ari, B. J. Santosa, Application of multivariate empirical mode decomposition in the VLF-EM data to identify underground river, Submitted.

DOI: 10.1142/s2424922x1650011x

Google Scholar