[1]
T. A. Shedd, Characteristics of the liquid film in horizontal two-phase flow, Ph. D. Thesis, the University of Illinois at Urbana-Champaign, (2001).
Google Scholar
[2]
L. Weidong, Z. Fangde, L. Rongxian, Z. Lixing, Experimental study on the characteristics of liquid layer and disturbance waves in horizontal annular flow, J. Therm. Sci. 8 (1999) 235-241.
Google Scholar
[3]
J.M. Rodriguez. Numerical simulation of two-phase annular flow, Ph. D. Thesis, Faculty of Rensselaer Polytechnic Institute, (2009).
Google Scholar
[4]
P. Sawant, M. Ishii, T. Hazuku, T. Takamasa, M. Mori, Properties of disturbance waves in vertical annular two-phase flow, Nucl. Eng. and Des. 238 (2008) 3528–3541.
DOI: 10.1016/j.nucengdes.2008.06.013
Google Scholar
[5]
D. Schubring, T.A. Shedd, Wave behavior in horizontal annular air–water flow, Int. J. Multiphase Flow 34 (2008) 636–646.
DOI: 10.1016/j.ijmultiphaseflow.2008.01.004
Google Scholar
[6]
S. Jayanti, G.F. Hewitt, S.P. White, Time-dependent behavior of the liquid film in horizontal annular flow, Int. J. Multiphase Flow 16 (1990) 1097-1116.
DOI: 10.1016/0301-9322(90)90108-u
Google Scholar
[7]
A. Setyawan, Indarto, Deendarlianto, Experimental investigation on disturbance wave velocity and frequency in air-water horizontal annular flow, Modern Applied Science 8 (2014) 84-96.
DOI: 10.5539/mas.v8n4p84
Google Scholar
[8]
J.M. Mandhane, G.A. Gregory, K. Aziz, A flow pattern map for gas-liquid flow in horizontal pipes, Int. J. Multiphase Flow 1 (1974) 537-553.
DOI: 10.1016/0301-9322(74)90006-8
Google Scholar
[9]
T. Fukano, Measurement of time varying thickness of liquid film flowing with high speed gas flow by CECM, Nucl. Eng. Des. 184 (1998) 363–377.
DOI: 10.1016/s0029-5493(98)00209-x
Google Scholar
[10]
Deendarlianto, A. Ousaka, A. Kariyasaki, T. Fukano, Investigation of liquid film behavior at the onset of flooding during adiabatic counter-current air–water two-phase flow in an inclined pipe, Nucl. Eng. Des., 235 (2005) 2281–2294.
DOI: 10.1016/j.nucengdes.2005.03.006
Google Scholar
[11]
Deendarlianto, A. Ousaka, Indarto, A. Kariyasaki, D. Lucas, K. Vierow, C. Vallee, K. Hogan, The effects of surface tension on flooding in counter-current two-phase flow in an inclined tube, Exp. Therm. Fluid Sci. 34 (2010) 813–826.
DOI: 10.1016/j.expthermflusci.2010.01.010
Google Scholar
[12]
A. Ousaka, Deendarlianto, A. Kariyasaki, T. Fukano, Prediction of flooding gas velocity in gas–liquid counter-current two-phase flow in inclined pipes, Nucl. Eng. Des. 236 (2006) 1282–1292.
DOI: 10.1016/j.nucengdes.2005.12.001
Google Scholar
[13]
I. Mantilla, Mechanistic modeling of liquid entrainment in gas in horizontal pipes, Ph. D. Diss., the University of Tulsa, (2008).
Google Scholar
[14]
A. Al-Sarkhi, C. Sarica, K. Magrini, Inclination effects on wave characteristics in annular gas–liquid flows, AIChE J. 58 (2012) 1018-1029.
DOI: 10.1002/aic.12653
Google Scholar
[15]
S.V. Paras, A.J. Karabelas, Properties of the liquid layer in horizontal annular flow, Int. J. Multiphase Flow 17 (1991) 439-454.
DOI: 10.1016/0301-9322(91)90041-z
Google Scholar
[16]
T. Fukano, A. Ousaka, T. Morimoto, K. Sekoguchi, Air-water annular two-phase flow in a horizontal tube (2nd report, Circumferential variations of film thickness parameters), Bull. JSME 26 (1983) 1387-1395.
DOI: 10.1299/jsme1958.26.1387
Google Scholar