[1]
S. Park, and Y. Suh, A zero velocity detection algorithm using inertial sensors for pedestrian navigation systems,. Sensors, vol. 10 no. 10, pp.9163-9178. october, (2010).
DOI: 10.3390/s101009163
Google Scholar
[2]
G. Opshaug, & P. Enge. GPS and UWB for Indoor Navigation. Department of Aeronautics and Astronautics, Stanford University. (2001).
Google Scholar
[3]
M. Heidari, & K. Pahlavan, Identification of the absence of direct path in ToA-based indoor localization systems,. International Journal of Wireless Information Networks, vol. 15, no. 3-4, pp.117-127. December (2008).
DOI: 10.1007/s10776-008-0084-7
Google Scholar
[4]
S. Venkatesh, & R. Buehrer, Non-line-of-sight identification in ultra-wideband systems based on received signal statistics,. Microwaves, Antennas & Propagation, IET, vol. 1, no. 6, pp.1120-1130. December (2007).
DOI: 10.1049/iet-map:20060273
Google Scholar
[5]
M. Montemerlo, S., Thrun, D., Koller, B., Wegbreit et al. FastSLAM: A factored solution to the simultaneous localization and mapping problem, AAAI-02. pp.593-598. July (2002).
Google Scholar
[6]
K. cCelik, & A. Somani, Monocular vision SLAM for indoor aerial vehicles 2013, Journal of Electrical and Computer Engineering. vol. 2013. pp.1566-1573. October (2013).
DOI: 10.1155/2013/374165
Google Scholar
[7]
L. Ni, Y., Liu, Y., Lau, & A. Patil, LANDMARC: indoor location sensing using active RFID,. Wireless Networks, vol. 10, no. 6, pp.701-710. March (2004).
DOI: 10.1023/b:wine.0000044029.06344.dd
Google Scholar
[8]
F. Evennou, & F. Marx, Advanced integration of WiFi and inertial navigation systems for indoor mobile positioning,. Eurasip Journal on Applied Signal Processing, vol. 2006. pp.164-164. Jan (2006).
DOI: 10.1155/asp/2006/86706
Google Scholar
[9]
G. Retscher, Test and integration of location sensors for a multi-sensor personal navigator,. Journal of Navigation, vol. 60 no. 01, pp.107-117. (2007).
DOI: 10.1017/s037346330700402x
Google Scholar
[10]
P. Aggarwal, D. Thomas, L. Ojeda, and J. Borenstein, Map matching and heuristic elimination of gyro drift for personal navigation systems in GPS-denied conditions,. Meas. Sci. Technol., vol. 22, no. 2, p.025205. Feb (2011).
DOI: 10.1088/0957-0233/22/2/025205
Google Scholar
[11]
G. Huang, Q. Zhu, and C. Siew, Extreme learning machine: a new learning scheme of feedforward, Neural networks. vol. 2, pp.985-990 July (2004).
DOI: 10.1109/ijcnn.2004.1380068
Google Scholar
[12]
J. Borenstein, & L. Ojeda, Heuristic drift elimination for personnel tracking systems,. Journal of Navigation, vol. 63, no. 04, pp.591-606 September (2010).
DOI: 10.1017/s0373463310000184
Google Scholar
[13]
M. Arathi, An Efficient and Accurate time series Classification using Shapelets,. IJIEE, vol. 4, no. 5. Month (2014).
DOI: 10.7763/ijiee.2014.v4.462
Google Scholar