[1]
Lisovskii, V. A., Lisovskaya.O. B, Kochetkova L.P., Favstov, Y.K., Sparingly Alloyed Bell Bronze with Elevated Parameters of Mechanical Properties, Journal Metal Science and Heat Treatment 49 (2007) 232-235.
DOI: 10.1007/s11041-007-0041-6
Google Scholar
[2]
Hosford, F.W., Mechanical Behaviour of Materials, Cambridge University Press, (2005).
Google Scholar
[3]
Kaplan, M. and Yieldiz, A.K., The Effects of Production Methods on Microstructures and Mechanical Properties of an Aluminum Bronze, Materials Letters, (2003), 4402-4411.
DOI: 10.1016/s0167-577x(03)00332-x
Google Scholar
[4]
Campbell, J., The New Metallurgy of Cast Metals, Second Edition, Butterworth Heinemann. (2003).
Google Scholar
[5]
Stefanescu, D.M., Science and Engineering of Casting Solidification, Kluwer Academic/Plenum Publisher, New York, Boston, Dordrecht, London, Moscow, (2002).
Google Scholar
[6]
Stefanescu, D.M. and Ruxanda, R., Fundamentals of Solidification, Metallography and Microstructures, ASM Handbook 9, (2004), 71–92.
DOI: 10.31399/asm.hb.v09.a0003724
Google Scholar
[7]
Lee, S.L. and Tzong, R., Y., Latent Heat Method for Solidification Process of a Binary Alloy System, Journal of Heat and Mass Transfer, 38 (1995) 1237-1247.
DOI: 10.1016/0017-9310(94)00240-v
Google Scholar
[8]
Martorano, M.,A. and Capocchi, J., D.,T., Heat Transfer Coefficient at the Metal-Mould Interface in the Unidirectional Solidification of Cu-8%Sn Alloys, Journal of Heat and Mass Transfer 43 (2000) 2541-2552.
DOI: 10.1016/s0017-9310(99)00298-7
Google Scholar
[9]
Kohler, F., Germond L, Wagniere J-D., Rappaz M., Peritectic Solidification of Cu–Sn Alloys: Microstructural Competition at Low Speed, Acta Materialia 57 (2008) 56–68.
DOI: 10.1016/j.actamat.2008.08.058
Google Scholar
[10]
Zhao, Y., Bian, X., Qin, J, Qin, X., Hou, X., Structural Evolution in the Solidification Process of Cu–Sn Alloys Journal of Non-Crystalline Solids, 353 (2007), 4845–4848.
DOI: 10.1016/j.jnoncrysol.2007.08.075
Google Scholar
[11]
ASTM, E 1876-01, Standard Test Method for Dynamic Young, Shear Modulus, and Poisson's Ratio by Impulse Excitation of vibration, ASTM International, (2002).
Google Scholar
[12]
Halvaee, A. and Talebi, A., Effect of Process Variables on Microstructure and Segregation in Centrifugal Casting of C92200 Alloy, Journal of Materials Processing Technology 118 (2001) 123–127.
DOI: 10.1016/s0924-0136(01)00904-9
Google Scholar
[13]
Hemanth, J., Effect of Cooling Rate on Dendrite Arm Spacing (DAS), Eutectic Cell Count (ECC) and Ultimate Tensile Strength (UTS) of Austempered Chilled Ductile iron, Materials and Design 21 (2000) 1-8.
DOI: 10.1016/s0261-3069(99)00052-7
Google Scholar
[14]
Shen, J., Liu, Y. C. and Hoxie, A., Rapid Directional Solidification in Sn-Cu Lead-Free solder Journal of University of Science and Technology Beijing Volume Z3. (2006).
DOI: 10.1016/s1005-8850(06)60069-8
Google Scholar
[15]
Zhang, L, Y, Jiang, Y, H, Ma, Z, Shan, S. F, Jia,Y. Z, Fan, C. Z, Wang, W. K, Effect of Cooling Cate on Solidified Microstructure and Mechanical Properties of Aluminium-A356 Alloy, Journal of Materials Processing Technology 207 (2008) 107–111.
DOI: 10.1016/j.jmatprotec.2007.12.059
Google Scholar
[16]
Askeland, D.R., The Science and Engineering of Materials, University of Misouri-Rolla, California, USA, (1984).
Google Scholar
[17]
De Silva Clarence W, Vibration Fundamental and Practice, Boca Raton London, CRC Press, (2000).
Google Scholar