[1]
L. Yuping, M. Aziz, K. Yasuki, S. Bhattacharya, A. Tsutsumi, Application of the self-heat recuperation technology for energy saving in biomass drying system, International Journal of Fuel Processing Technology 117 (2014) 66–74.
DOI: 10.1016/j.fuproc.2013.02.007
Google Scholar
[2]
S. Singh, S. Kumar, Development of convective heat transfer correlations for common designs of solar dryer, Journal Sci of Energy Conversion and Management 64 (2012) 403–414.
DOI: 10.1016/j.enconman.2012.06.017
Google Scholar
[3]
C. Lamnatou, E. Papanicolaou, V. Belessiotis, N. Kyriakis, Experimental investigation and thermodynamic performance analysis of a solar dryer using an evacuated-tube air collector, International Journal Sci of Applied Energy 94 (2012) 232–243.
DOI: 10.1016/j.apenergy.2012.01.025
Google Scholar
[4]
A. Fudholi, K. Sopian, M.Y. Othman, M.H. Ruslan, Energy and exergy analyses of solar drying system of red seaweed, Journal of Energy and Buildings 68 (2014) 121–129.
DOI: 10.1016/j.enbuild.2013.07.072
Google Scholar
[5]
A.A. El-Sebaii, S.M. Shalaby, Experimental investigation of an indirect-mode forced convection solar dryer for drying thymus and mint, International Journal Sci of Energy Conversion and Management 74 (2013) 109–116.
DOI: 10.1016/j.enconman.2013.05.006
Google Scholar
[6]
T. Koyuncu, An Investigation on the performance Improvement of greenhouse-type agricultural dryers, International Journal of Renewable Energy 31 (2006) 1055–1071.
DOI: 10.1016/j.renene.2005.05.014
Google Scholar
[7]
V.P. Sethi, A. Sadhna, Improvement in greenhouse solar drying using inclined north wall reflection, International Journal of Solar Energy 83 (2009) 1472–1484.
DOI: 10.1016/j.solener.2009.04.001
Google Scholar
[8]
S. Janjai, N. Lamlert, P. Intawee, B. Mahayothee, B.K. Bala, M. Nagle, J. Muller, Experimental and simulated performance of a PV-ventilated solar greenhouse dryer for drying of peeled longan and banana, International Journal of Solar Energy 83 (2009).
DOI: 10.1016/j.solener.2009.05.003
Google Scholar
[9]
S. Janjai, P. Intawee, J. Kaewkiewa, C. Sritus, V. Khamvongsa, A large-scale solar greenhouse dryer using polycarbonate cover: Modeling and testing in a tropical environment of Lao People's Democratic Republic, Journal of Renewable Energy 36 (2011).
DOI: 10.1016/j.renene.2010.09.008
Google Scholar
[10]
J. Kaewkiew, S. Nabnean , S. Janjai, Experimental investigation of the performance of a large-scale greenhouse type solar dryer for drying chilli in Thailand, International Journal Sci of Procedia Engineering 32 (2012) 433 – 439.
DOI: 10.1016/j.proeng.2012.01.1290
Google Scholar
[11]
J. Prasad, V.K. Vijay, G.N. Tiwari, V.P.S. Sorayan, Study on performance evaluation of hybrid drier for turmeric (Curcuma longa L. ) drying at village scale, International Journal of Food Engineering 75 (2006) 497–502.
DOI: 10.1016/j.jfoodeng.2005.04.061
Google Scholar
[12]
P. Barnwal, G.N. Tiwari, Grape drying by using hybrid photovoltaic-thermal (PV/T) greenhouse dryer: An experimental study, Journal of Solar Energy 82 (2008) 1131–1144.
DOI: 10.1016/j.solener.2008.05.012
Google Scholar
[13]
E.C. Lopez-Vidan, L.L. Mendez-Lagunas, J. Rodrıguez-Ramırez, Efficiency of a hybrid solar–gas dryer, International Journal Sci of Solar Energy 93 (2013) 23–31.
DOI: 10.1016/j.solener.2013.01.027
Google Scholar
[14]
A. Mohajer, O. Nematollahi, M.M. Joybari, S.A. Hashemi, M.R. Assari, Experimental investigation of a Hybrid Solar Drier and Water Heater System, International Journal of Energy Conversion and Management 76 (2013) 935–944.
DOI: 10.1016/j.enconman.2013.08.047
Google Scholar
[15]
W. Chen, M. Qu, Analysis of the heat transfer and airflow in solar chimney drying system with porous absorber, International Journal of Renewable Energy 63 (2014) 511–518.
DOI: 10.1016/j.renene.2013.10.006
Google Scholar
[16]
J.A. Duffie, W.A. Beckman, Solar Engineering and Thermal Processes, John Wiley & Sons, Inc., New York, USA, (1991).
Google Scholar
[17]
M.J. Moran, H.N. Shapiro, Fundamentals of Engineering Thermodynamics, John Wiley & Sons, Inc., New York, USA, Fourth edition, (1993).
Google Scholar
[18]
F.P. Icropera, D.P. De Witt, T.L. Bergman, A.S. Lavine, Fundamentals of Heat and Mass Transfer, John Wiley & Sons, Inc., New York, USA, Sixth edition, (2006).
Google Scholar