[1]
J. W. Hutchinson, Fundamental of the phenomenological theory of nonlinear fracture mechanics, Journal of Applied Mechanics 50 (1983) 1042 1051.
DOI: 10.1115/1.3167187
Google Scholar
[2]
T. L. Anderson, Fracture Mechanics: Fundaments and Applications – 3rd Edition, CRC Press, Boca Raton, FL, (2005).
Google Scholar
[3]
R. H. Dodds, C. Shih, T. Anderson, Continuum and micro-mechanics treatment of constraint in fracture, International Journal of Fracture 64 (1993) 101-133.
DOI: 10.1007/bf00016693
Google Scholar
[4]
A. M. Al-Ani, J. W. Hancock, J-dominance of short cracks in tension and bending, Journal of the Mechanics and Physics of Solids 39 (1991) 23-43.
DOI: 10.1016/0022-5096(91)90029-n
Google Scholar
[5]
D. M. Parks, Advances in characterization of elastic-plastic crack-tip fields, in: A. S. Argon (Ed. ), Topics in Fracture and Fatigue, Springer Verlag (1992) 59-98.
DOI: 10.1007/978-1-4612-2934-6_2
Google Scholar
[6]
N. O'Dowd, C. Shih, Family of crack-tip fields characterized by a triaxiality parameter: Part I – structure of fields, Journal of the Mechanics and Physics of Solids 39 (1991) 989-1015.
DOI: 10.1016/0022-5096(91)90049-t
Google Scholar
[7]
A. N. Stroh, The Formation of Cracks as a Result of Plastic Flow, Proceedings A, The Royal Society A223 (1954) 404.
Google Scholar
[8]
A. H. Cottrell, Theory of brittle fracture in steel and similar metals, Trans. Metall. Soc. AIME 212 (1958) 192-203.
Google Scholar
[9]
E. Smith, Proceedings, Conference on Physical Basis of Yield and Fracture, Physical Society of Oxford, A. C. Strickland, ed. (1966) 36-45.
Google Scholar
[10]
D. A. Curry, Influence of microstructure on yield stress and cleavage fracture stress at -196°C of SA 508 class 2 pressure vessel steel, Metal Science 18 (1984) 67-75.
DOI: 10.1179/030634584790420276
Google Scholar
[11]
G. Golisch, A. Hosten, S. Münstermann, W. Bleck, Vorstellung eines schädigungsmechanischen Materialmodells zur Beschreibung des Tieflagenverhaltens ferritischer Stähle, DVM report 246, Bruchmechanische Werkstoff- und Bauteilbewertung: Beanspruchungsanalyse, Prüfmethoden und Anwendungen, Berlin (2014).
Google Scholar
[12]
R. O. Ritchie, J. F. Knott, J. R. Rice, On the relationship between critical tensile stress and fracture toughness in mild steel, Journal of the Mechanics and Physics of Solids 21 (1973) 395-410.
DOI: 10.1016/0022-5096(73)90008-2
Google Scholar
[13]
F. M. Beremin, A local criterion for the cleavage fracture of a nuclear pressure vessel steel, Metallurgical and Materials Transactions A 14 (1983) 2277-2287.
DOI: 10.1007/bf02663302
Google Scholar
[14]
L. E. Kaechele, A. S. Tetelman, A statistical investigation of microcrack formation, Acta Metallurgica 17 (1969) 463-475.
DOI: 10.1016/0001-6160(69)90028-5
Google Scholar
[15]
B. J. Brindley, The effect of dynamic strain-ageing on the ductile fracture process in mild steel, Acta Metallurgica 18 (1970) 325-329.
DOI: 10.1016/0001-6160(70)90147-1
Google Scholar
[16]
J. Gurland, Observations on the fracture of cementite particles in a spheroidized 1. 05% c steel deformed at room temperature, Acta Metallurgica 20 (1972) 735-741.
DOI: 10.1016/0001-6160(72)90102-2
Google Scholar
[17]
J. Lian et al., A hybrid approach for modelling of plasticity and failure behavior of advanced high-strength steel sheets, International Journal of Damage Mechanics 22 (2013) 188-218.
DOI: 10.1177/1056789512439319
Google Scholar
[18]
Y. Bai, T. Wierzbicki, A new model of metal plasticity and fracture with pressure and Lode dependence, International Journal of Plasticity 24 (2008) 1071-1096.
DOI: 10.1016/j.ijplas.2007.09.004
Google Scholar