Influence of the Stress State on the Predictability of the Failure Probability in the Beremin Model

Article Preview

Abstract:

The influence of the local state of stress on the predictability of the Beremin model is investigated. For this purpose, the Beremin model is used on a series of tensile experiments with varying constraints. One specimen series is used to calibrate the Beremin parameters. These are afterwards applied to all specimen series. For all series the test results are compared to the predicted 5% to 95% failure probability corridor calculated by the Beremin model. The results are then discussed in concern of the influence of the stress state on the predictability of the Beremin model.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

403-410

Citation:

Online since:

August 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] J. W. Hutchinson, Fundamental of the phenomenological theory of nonlinear fracture mechanics, Journal of Applied Mechanics 50 (1983) 1042 1051.

DOI: 10.1115/1.3167187

Google Scholar

[2] T. L. Anderson, Fracture Mechanics: Fundaments and Applications – 3rd Edition, CRC Press, Boca Raton, FL, (2005).

Google Scholar

[3] R. H. Dodds, C. Shih, T. Anderson, Continuum and micro-mechanics treatment of constraint in fracture, International Journal of Fracture 64 (1993) 101-133.

DOI: 10.1007/bf00016693

Google Scholar

[4] A. M. Al-Ani, J. W. Hancock, J-dominance of short cracks in tension and bending, Journal of the Mechanics and Physics of Solids 39 (1991) 23-43.

DOI: 10.1016/0022-5096(91)90029-n

Google Scholar

[5] D. M. Parks, Advances in characterization of elastic-plastic crack-tip fields, in: A. S. Argon (Ed. ), Topics in Fracture and Fatigue, Springer Verlag (1992) 59-98.

DOI: 10.1007/978-1-4612-2934-6_2

Google Scholar

[6] N. O'Dowd, C. Shih, Family of crack-tip fields characterized by a triaxiality parameter: Part I – structure of fields, Journal of the Mechanics and Physics of Solids 39 (1991) 989-1015.

DOI: 10.1016/0022-5096(91)90049-t

Google Scholar

[7] A. N. Stroh, The Formation of Cracks as a Result of Plastic Flow, Proceedings A, The Royal Society A223 (1954) 404.

Google Scholar

[8] A. H. Cottrell, Theory of brittle fracture in steel and similar metals, Trans. Metall. Soc. AIME 212 (1958) 192-203.

Google Scholar

[9] E. Smith, Proceedings, Conference on Physical Basis of Yield and Fracture, Physical Society of Oxford, A. C. Strickland, ed. (1966) 36-45.

Google Scholar

[10] D. A. Curry, Influence of microstructure on yield stress and cleavage fracture stress at -196°C of SA 508 class 2 pressure vessel steel, Metal Science 18 (1984) 67-75.

DOI: 10.1179/030634584790420276

Google Scholar

[11] G. Golisch, A. Hosten, S. Münstermann, W. Bleck, Vorstellung eines schädigungsmechanischen Materialmodells zur Beschreibung des Tieflagenverhaltens ferritischer Stähle, DVM report 246, Bruchmechanische Werkstoff- und Bauteilbewertung: Beanspruchungsanalyse, Prüfmethoden und Anwendungen, Berlin (2014).

Google Scholar

[12] R. O. Ritchie, J. F. Knott, J. R. Rice, On the relationship between critical tensile stress and fracture toughness in mild steel, Journal of the Mechanics and Physics of Solids 21 (1973) 395-410.

DOI: 10.1016/0022-5096(73)90008-2

Google Scholar

[13] F. M. Beremin, A local criterion for the cleavage fracture of a nuclear pressure vessel steel, Metallurgical and Materials Transactions A 14 (1983) 2277-2287.

DOI: 10.1007/bf02663302

Google Scholar

[14] L. E. Kaechele, A. S. Tetelman, A statistical investigation of microcrack formation, Acta Metallurgica 17 (1969) 463-475.

DOI: 10.1016/0001-6160(69)90028-5

Google Scholar

[15] B. J. Brindley, The effect of dynamic strain-ageing on the ductile fracture process in mild steel, Acta Metallurgica 18 (1970) 325-329.

DOI: 10.1016/0001-6160(70)90147-1

Google Scholar

[16] J. Gurland, Observations on the fracture of cementite particles in a spheroidized 1. 05% c steel deformed at room temperature, Acta Metallurgica 20 (1972) 735-741.

DOI: 10.1016/0001-6160(72)90102-2

Google Scholar

[17] J. Lian et al., A hybrid approach for modelling of plasticity and failure behavior of advanced high-strength steel sheets, International Journal of Damage Mechanics 22 (2013) 188-218.

DOI: 10.1177/1056789512439319

Google Scholar

[18] Y. Bai, T. Wierzbicki, A new model of metal plasticity and fracture with pressure and Lode dependence, International Journal of Plasticity 24 (2008) 1071-1096.

DOI: 10.1016/j.ijplas.2007.09.004

Google Scholar