[1]
C. H. Tie and C. K. Gan, Impact of Grid-Connected Residential PV Systems on the Malaysia Low Voltage Distribution Network, in 2013 IEEE 7th International Power Engineering and Optimizatinon Conference (PEOCO2013), 2013, no. June, p.670–675.
DOI: 10.1109/peoco.2013.6564631
Google Scholar
[2]
KeTTHA, Handbook on the Malaysian Feed-in Tariff for the Promotion of Renewable Energy, (2011).
Google Scholar
[3]
The Economic Planning Unit, 10th Malaysia Plan (Chapter 6: Building and Environment that Enhances Quality of Life), " Prime Minister, s Depatrment, 2010. [Online]. Available: file: //F: /References Paper/Malaysian 10th Plan. pdf.
Google Scholar
[4]
W. Jewell and R. Ramakumar, The effects of moving clouds on electric utilities with dispersed photovoltaic generation, IEEE Trans. Energy Convers., vol. EC-2, no. 4, p.570–576, (1987).
DOI: 10.1109/tec.1987.4765894
Google Scholar
[5]
W. T. Jewell and T. D. Unruh, Limits on cloud-induced fluctuation in photovoltaic generation, IEEE Trans. Energy Convers., vol. 5, no. 1, p.8–14, (1990).
DOI: 10.1109/60.50805
Google Scholar
[6]
G. G. Karady, S. Saksena, B. Shi, and N. Senroy, Effects of Voltage Sags on Loads in a Distribution System, (2005).
Google Scholar
[7]
M. Thomson and D. G. Infield, Impact of widespread photovoltaics generation on distribution systems, IET Renewable. Power Gener., vol. 1, no. 1, p.33–40, (2007).
DOI: 10.1049/iet-rpg:20060009
Google Scholar
[8]
R. Yan, S. Roediger, and T. K. Saha, Impact of Photovoltaic Power Fluctuations by Moving Clouds on Network Voltage : A Case Study of an Urban Network, in IEEE Conferences Publication, 2011, p.1–6.
Google Scholar
[9]
R. Yan and T. K. Saha, Voltage Variation Sensitivity Analysis for Unbalanced Distribution Networks Due to Photovoltaic Power Fluctuations, IEEE Trans. Power Syst., vol. 27, no. 2, p.1078–1089, May (2012).
DOI: 10.1109/tpwrs.2011.2179567
Google Scholar
[10]
R. Yan and T. K. Saha, Investigation of Voltage Variations in Unbalanced Distribution Systems due to High Photovoltaic Penetrations, in IEEE Conferences Publication, 2011, p.1–8.
DOI: 10.1109/pes.2011.6038977
Google Scholar
[11]
M. J. E. Alam, K. M. Muttaqi, and D. Sutanto, A Novel Approach for Ramp-Rate Control of Solar PV Using Energy Storage to Mitigate Output Fluctuations Caused by Cloud Passing, IEEE Trans. Energy Convers., vol. 29, no. 2, p.507–518, (2014).
DOI: 10.1109/tec.2014.2304951
Google Scholar
[12]
C. Cai and D. C. Aliprantis, Cumulus Cloud Shadow Model for Analysis of Power Systems With Photovoltaics, IEEE Trans. Energy Convers., vol. 28, no. 4, p.4496–4506, (2013).
DOI: 10.1109/tpwrs.2013.2278685
Google Scholar
[13]
D. Yang, P. Jirutitijaroen, and W. M. Walsh, Hourly solar irradiance time series forecasting using cloud cover index, Sol. Energy, vol. 86, no. 12, p.3531–3543, Dec. (2012).
DOI: 10.1016/j.solener.2012.07.029
Google Scholar
[14]
IEEE POWER ENGINEERING SOCIETY, Distribution Test Feeder: IEEE 4 node test feeder, The Institute of Electrical and Electronics Engineers, Inc., 2013. [Online]. Available: http: /ewh. ieee. org/soc/pes/dsacom/testfeeders/. [Accessed: 18-Nov-2014].
Google Scholar
[15]
A. M. Busrah, M. T. Au, and M. Mohamad, End user load profile analysis for distribution system planning, in 21st International Conference on Electricity Distribution, 2011, vol. 1, no. 0082, p.1–4.
Google Scholar
[16]
R. C. Dugan, T. E. Mcdermott, and S. Member, An Open Source Platform for Collaborating on Smart Grid Research, in IEEE Conferences Publication, 2011, no. Ivvc, p.1–7.
Google Scholar