[1]
R. H. Inman, H. T. Pedro, and C. F. Coimbra, Solar forecasting methods for renewable energy integration, Progress in Energy and Combustion Science, vol. 39, no. 6, p.535–576, (2013).
DOI: 10.1016/j.pecs.2013.06.002
Google Scholar
[2]
J. -L. Chen, G. -S. Li, and S. -J. Wu, Assessing the potential of support vector machine for estimating daily solar radiation using sunshine duration, Energy Conversion and Management, vol. 75, p.311–318, (2013).
DOI: 10.1016/j.enconman.2013.06.034
Google Scholar
[3]
B. B. Ekici, A least squares support vector machine model for prediction of the next day solar insolation for effective use of PV systems, Measurement, vol. 50, p.255–262, (2014).
DOI: 10.1016/j.measurement.2014.01.010
Google Scholar
[4]
K. A. Baharin, H. A. Rahman, M. Y. Hassan, and C. K. Gan, Hourly irradiance forecasting in Malaysia using support vector machine, in Energy Conversion (CENCON), 2014 IEEE Conference on, 2014, p.185–190.
DOI: 10.1109/cencon.2014.6967499
Google Scholar
[5]
H. W. Mei and J. J. Ma, Photovoltaic Power Generation Forecasting Model with Improved Support Vector Machine Regression Based on Rough Set and Similar Day, Advanced Materials Research, vol. 805, p.114–120, (2013).
DOI: 10.4028/www.scientific.net/amr.805-806.114
Google Scholar
[6]
R. Xu, H. Chen, and X. Sun, Short-term photovoltaic power forecasting with weighted support vector machine, in Automation and Logistics (ICAL), 2012 IEEE International Conference on, 2012, p.248–253.
DOI: 10.1109/ical.2012.6308206
Google Scholar
[7]
J. G. da S. F. Junior, T. Oozeki, H. Ohtake, K. Shimose, T. Takashima, and K. Ogimoto, Forecasting Regional Photovoltaic Power Generation-A Comparison of Strategies to Obtain One-Day-Ahead Data, Energy Procedia, vol. 57, p.1337–1345, (2014).
DOI: 10.1016/j.egypro.2014.10.124
Google Scholar
[8]
J. G. Silva Fonseca, T. Oozeki, T. Takashima, G. Koshimizu, Y. Uchida, and K. Ogimoto, Use of support vector regression and numerically predicted cloudiness to forecast power output of a photovoltaic power plant in Kitakyushu, Japan, Progress in Photovoltaics: Research and Applications, vol. 20, no. 7, p.874.
DOI: 10.1002/pip.1152
Google Scholar
[9]
M. Bouzerdoum, A. Mellit, and A. Massi Pavan, A hybrid model (SARIMA-SVM) for short-term power forecasting of a small-scale grid-connected photovoltaic plant, Solar Energy, vol. 98, p.226–235, (2013).
DOI: 10.1016/j.solener.2013.10.002
Google Scholar
[10]
A. J. Smola and B. Schӧlkopf, A tutorial on support vector regression, Statistics and computing, vol. 14, no. 3, p.199–222, (2004).
DOI: 10.1023/b:stco.0000035301.49549.88
Google Scholar
[11]
H. Drucker, C. J. Burges, L. Kaufman, A. Smola, and V. Vapnik, Support vector regression machines, Advances in neural information processing systems, vol. 9, p.155–161, (1997).
Google Scholar
[12]
T. Fletcher, Support vector machines explained, Tutorial paper., Mar, (2009).
Google Scholar
[13]
C. -C. Chang and C. -J. Lin, LIBSVM: a library for support vector machines, ACM Transactions on Intelligent Systems and Technology (TIST), vol. 2, no. 3, p.27, (2011).
DOI: 10.1145/1961189.1961199
Google Scholar