Experimental Depth Positioning Control for a Spherical Underwater Robot Vehicle (URV)

Article Preview

Abstract:

Recently, position control of URVs has been a challenge due to the buoyancy forces, and high current load of ocean. In this paper, variable ballast tank (VBT) of a spherical URV is developed as vertical motion actuator, and the problem of internal dynamic forces which caused by empty space inside the VBT has been discussed. In order to test the stability of the proposed system, the experimental model of URV has been tested in 1-5 meter underwater depth.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

729-733

Citation:

Online since:

August 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] R. N. K. Loh, and M. N. Karsiti, Observer-Based Nonlinear Control of Depth Positioning of a Spherical Underwater Robotic Vehicle, IEEE 4th International Conference on Intelligent and Advanced Systems (ICIAS), Kuala Lumpur, Malaysia, (2012).

DOI: 10.1109/icias.2012.6306070

Google Scholar

[2] S. K. Choi, J. Yuh, and N. Keevil, Design of Omni-Directional Underwater Robotic Vehicle, " OCEANS, 93, Engineering in Harmony with Ocean, Victoria, Canada, vol. 1, pp.1192-1197, (1993).

DOI: 10.1109/oceans.1993.326009

Google Scholar

[3] B. Sumantri, and M. N. Karsiti, Development of Variable Ballast Mechanism for Depth Positioning of Spherical URV, IEEE International Conference on Intelligent and Advanced Systems (ICIAS), Kuala Lumpur, Malaysia, (2008).

DOI: 10.1109/itsim.2008.4631898

Google Scholar

[4] J. S. Riedel, A. J. Healey, D. B. Marco, and B. Bahadir, Design and Development of Low Cost Variable Buoyancy System for the Soft Grounding of Autonomous Underwater Vehicles, " 11th International Symposium on Unmanned Untethered Submersible Technology (UUST, 99), (1999).

DOI: 10.21236/ada436027

Google Scholar

[5] M. Worall, A. J. Jamieson, A. Holford, R. D. Neilson, M. Player, and P. M. Bagley, A variable buoyancy system for deep ocean vehicles, IEEE Oceans, Europe, (2007).

DOI: 10.1109/oceanse.2007.4302317

Google Scholar

[6] K. S. Wasserman, J. L. Mathieu, M. I. Wolf, A. Hathi, S. E. Fried, and A. K. Baker, Dynamic Buoyancy Control of an ROV Using a Variable Ballast Tank, Oceans, (2003).

DOI: 10.1109/oceans.2003.178366

Google Scholar

[7] S. M. Smith, and M. Xu, Adaptive Fuzzy Logic Depth Controller for Variable Buoyancy System of Autonomous Underwater Vehicles, IEEE Conference on World Congress on Computational Intelligence, Florida, USA, (1994).

DOI: 10.1109/fuzzy.1994.343904

Google Scholar

[8] W. Zhao, and M. Zhang, A Variable Buoyancy System for Long Cruising Range AUV, IEEE International Conference on Computer Mechatronics Control and Electronic Engineering (CMCE) Harbin, China, (2010).

DOI: 10.1109/cmce.2010.5610369

Google Scholar

[9] R. E. Davis, D. C. Webb, L. A. Regier, and J. Dufour, The Autonomous Lagrangian Circulation Explorer (ALACE), Journal of Atmospheric and Oceans Technology, vol. 9, pp.264-285, (1991).

DOI: 10.1175/1520-0426(1992)009<0264:talce>2.0.co;2

Google Scholar

[10] A. Agrawal, B. Prasad, V. Viswanathan, and S. K. Panda Dynamic Modeling of Variable Ballast Tank for Spherical Underwater Robot, IEEE Conference on Decision and Control, Singapore, (2013).

DOI: 10.1109/icit.2013.6505648

Google Scholar

[11] A. H. Shajahan, and A. Anand, Data Acquisition and Control using Arduino-Platform: Smart plug, International Conference on Energy Efficient Technologies for Sustainability (ICEETS), Chennai, India, (2013).

DOI: 10.1109/iceets.2013.6533389

Google Scholar

[12] Z. Chen, Z. Q. Bo, and X. Z. Dong A Transient Signal Based Protective Relay in Power Systems with Power Electronic Converters, IEEE/PES Transmission and Distribution Conference & Exhibition, Dalian, China, (2005).

DOI: 10.1109/tdc.2005.1547161

Google Scholar