Indirect Additive Manufacturing (AM) of Apatite-Wollastonite (A-W) Glass-Ceramic for Medical Implants

Article Preview

Abstract:

Bone replacements for congenital defects, cancer resections, and traumas are typically performed using bone grafting. However, due to scarcity of the source material, synthetic materials for bone replacements are sometimes used instead. Unfortunately, the ability to engineer anatomically correct pieces of viable and functional human bone are difficult and time-consuming through conventional manufacturing methods. This paper proposes an alternative route which incorporates the use of AM technology for fabricating patient-specific implants. The implants were computer-aided design (CAD) from a stereolithography (STL) file of a mandible. AM method was combined with lost wax casting (LWC) technology to produce the customised A-W glass-ceramic implants. An initial study of sintered A-W was performed on cylindrical samples show on average 19.8% porous with on average 75% of the porosity being open and an average flexural strength of 82.6 MPa. The A-W scaffolds display a degree of macro-and micro porosity. The geometrical shape of the A-W implants shows a close resemblance to the required implant. Additive manufacturing assisted fabrication of A-W glass-ceramic provides a promising method for manufacturing customised medical implants.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

354-360

Citation:

Online since:

August 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] W. Schlickewei and C. Schlickewei, The Use of Bone Substitutes in the Treatment of Bone Defects – the Clinical View and History, Macromolecular Symposia, vol. 253, pp.10-23, (2007).

DOI: 10.1002/masy.200750702

Google Scholar

[2] J. S. Silber, D. G. Anderson, S. D. Daffner, B. T. Brislin, J. M. Leland, A. S. Hilibrand, A. R. Vaccaro, and T. J. Albert, Donor Site Morbidity After Anterior Iliac Crest Bone Harvest for Single-Level Anterior Cervical Discectomy and Fusion, Spine, vol. 28, pp.134-139, (2003).

DOI: 10.1097/00007632-200301150-00008

Google Scholar

[3] A. Neamat, A. Gawish, and A. M. Gamal-Eldeen, [beta]-Tricalcium phosphate promotes cell proliferation, osteogenesis and bone regeneration in intrabony defects in dogs, Archives of Oral Biology, vol. 54, pp.1083-1090, (2009).

DOI: 10.1016/j.archoralbio.2009.09.003

Google Scholar

[4] H. H. Horch, R. Sader, C. Pautke, A. Neff, H. Deppe, and A. Kolk, Synthetic, pure-phase beta-tricalcium phosphate ceramic granules (Cerasorb®) for bone regeneration in the reconstructive surgery of the jaws, International Journal of Oral and Maxillofacial Surgery, vol. 35, pp.708-713, (2006).

DOI: 10.1016/j.ijom.2006.03.017

Google Scholar

[5] J. P. Schmitz, Bone Substitutes in Reconstructive Implant Surgery, Journal of Oral and Maxillofacial Surgery, vol. 63, pp.117-118, (2005).

DOI: 10.1016/j.joms.2005.05.067

Google Scholar

[6] C. E. Wilson, J. D. de Bruijn, C. A. van Blitterswijk, A. J. Verbout, and W. J. Dhert, Design and fabrication of standardized hydroxyapatite scaffolds with a defined macro-architecture by rapid prototyping for bone-tissue-engineering research, J. Biomed. Mate. r Res. A, vol. 68, pp.123-132, (2004).

DOI: 10.1002/jbm.a.20015

Google Scholar

[7] D. W. Hutmacher, Scaffolds in tissue engineering bone and cartilage, Biomaterials, vol. 21, pp.2529-2543, (2000).

DOI: 10.1016/s0142-9612(00)00121-6

Google Scholar

[8] S. -C. Lee, C. -T. Wu, S. -T. Lee, and P. -J. Chen, Cranioplasty using polymethyl methacrylate prostheses, Journal of Clinical Neuroscience, vol. 16, pp.56-63, (2009).

DOI: 10.1016/j.jocn.2008.04.001

Google Scholar

[9] S. Lohfeld, P. McHugh, D. Serban, D. Boyle, G. O'Donnell, and N. Peckitt, Engineering Assisted Surgery(TM): A route for digital design and manufacturing of customised maxillofacial implants, Journal of Materials Processing Technology, vol. 183, pp.333-338, (2007).

DOI: 10.1016/j.jmatprotec.2006.10.028

Google Scholar

[10] P. S. D'Urso, W. J. Earwaker, T. M. Barker, M. J. Redmond, R. G. Thompson, D. J. Effeney, and F. H. Tomlinson, Custom cranioplasty using stereolithography and acrylic, British Journal of Plastic Surgery, vol. 53, pp.200-204, (2000).

DOI: 10.1054/bjps.1999.3268

Google Scholar

[11] S. Yang, H. Yang, X. Chi, J. R. G. Evans, I. Thompson, R. J. Cook, and P. Robinson, Rapid prototyping of ceramic lattices for hard tissue scaffolds, Materials & Design, vol. 29, pp.1802-1809, (2008).

DOI: 10.1016/j.matdes.2008.03.024

Google Scholar

[12] E. Bassoli, A. Gatto, L. Iuliano, and M. G. Violante, 3D printing technique applied to rapid casting, Rapid Prototyping Journal, vol. 13, pp.148-155, (2007).

DOI: 10.1108/13552540710750898

Google Scholar

[13] D. W. Hutmacher, M. Sittinger, and M. V. Risbud, Scaffold-based tissue engineering: rationale for computer-aided design and solid free-form fabrication systems, Trends in Biotechnology, vol. 22, pp.354-362, (2004).

DOI: 10.1016/j.tibtech.2004.05.005

Google Scholar

[14] P. Wang, J. Hu, and P. X. Ma, The engineering of patient-specific, anatomically shaped, digits, Biomaterials, vol. 30, pp.2735-2740, (2009).

DOI: 10.1016/j.biomaterials.2009.01.037

Google Scholar

[15] J. Will, R. Melcher, C. Treul, N. Travitzky, U. Kneser, E. Polykandriotis, R. Horch, and P. Greil, Porous ceramic bone scaffolds for vascularized bone tissue regeneration, Journal of Materials Science-Materials in Medicine, vol. 19, pp.2781-2790, Aug (2008).

DOI: 10.1007/s10856-007-3346-5

Google Scholar

[16] K. Xiao, K. W. Dalgarno, D. J. Wood, R. D. Goodridge, and C. Ohtsuki, Indirect selective laser sintering of apatite–wollostonite glass–ceramic, Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine, vol. 222, pp.1107-1114, (2008).

DOI: 10.1243/09544119jeim411

Google Scholar

[17] K. Xiao, J. A. Dyson, K. W. Dalgarno, P. Genever, D. J. Wood, R. D. Goodridge, and C. Ohtsuki, Manufacture and characterisation of bioceramic tissue engineering scaffolds produced by selective laser sintering, in ASME International Conference on Manufacturing Science and Engineering, Atlanta, GA, 2007, pp.83-90.

DOI: 10.1115/msec2007-31031

Google Scholar

[18] BSI, BS EN 1389: 2003 Advanced technical ceramics. Ceramic composites. Physical properties. Determination of density and apparent porosity., vol. BS EN 1389: 2003, B. S. Institute, Ed.: Bristish Standard Institute, London, 2003, p.12.

DOI: 10.3403/02984267

Google Scholar

[19] S. F. Khan, Dalgarno, Kenneth W., Design of customised bioceramic medical implants by layered manufacturing, in Innovative Developments in Design and Manufacturing, P. J. e. a. Bartolo, Ed. London: Taylor & Francis Group, 2010, pp.187-192.

DOI: 10.1201/9780203859476.ch27

Google Scholar

[20] T. Kokubo, Bioactive glass-ceramics, in Bioceramics and their clinical applications, T. Kokubo, Ed. Cambridge: Woodhead Publishing, 2008, pp.284-301.

DOI: 10.1533/9781845694227.2.284

Google Scholar