[1]
T. Lassen, N. Recho, Proposal for a more accurate physically based S–N curve for welded steel joints, Int. J. of Fatigue. 31 (2009) 70-78.
DOI: 10.1016/j.ijfatigue.2008.03.032
Google Scholar
[2]
X. Zhao, D. Wang, L. Huo, Analysis of the S–N curves of welded joints enhanced by ultrasonic peening treatment, Materials & Design. 32 (2011) 88-96.
DOI: 10.1016/j.matdes.2010.06.030
Google Scholar
[3]
S. Rimkevicius, A. Kaliatka, M. Valincius, G. Dundulis, R. Janulionis, A. Grybenas, I. Zutautaite, Development of approach for reliability assessment of pipeline network systems. Appl. Energy 94 (2012) 22 - 33.
DOI: 10.1016/j.apenergy.2012.01.015
Google Scholar
[4]
C.R.F. Azevedo, Failure analysis of a crude oil pipeline, Eng. Fail. Anal. 14 (2007) 978 - 994.
Google Scholar
[5]
R. Fouchereau, G. Celeux, P. Pamphile, Probabilistic modeling of S-N curves, Int. J. of Fatigue. 68 (2014) 217 - 223.
DOI: 10.1016/j.ijfatigue.2014.04.015
Google Scholar
[6]
S. Hai-Jun, G. Wan-Lin, M. Jun-Feng, Z. Bao-Tian, Relations between the S–N, ɛ–N and da/dN-DK curves of materials, Open Mech. Eng. J. 3 (2009) 35 - 42.
Google Scholar
[7]
C.S. Bandara, S.C. Siriwardane, U.I. Dissanayake, R. Dissanayake, Fatigue failure predictions for steels in the very high cycle region – A review and recommendations, Eng. Fail. Anal. 45 (2014) 421 - 435.
DOI: 10.1016/j.engfailanal.2014.07.015
Google Scholar
[8]
A. Pfennig, R. Wiegand , M. Wolf, C.P. Bork, Corrosion and corrosion fatigue of AISI 420C (X46Cr13) at 60 °C in CO2-saturated artificial geothermal brine. Corr. Sci. 68 (2013) 134 - 143.
DOI: 10.1016/j.corsci.2012.11.005
Google Scholar
[9]
X. Zhao, D. Wang, L. Huo, Analysis of the S–N curves of welded joints enhanced by ultrasonic peening treatment, Materials & Design. 32 (2011) 88 - 96.
DOI: 10.1016/j.matdes.2010.06.030
Google Scholar
[10]
K. Miková, S. Bagherifard, O. Bokuvka, M. Guagliano, L. Trško, Fatigue behavior of X70 microalloyed steel after severe shot peening, Int. J. of Fatigue 55 (2013) 33 - 42.
DOI: 10.1016/j.ijfatigue.2013.04.021
Google Scholar
[11]
ASTM E466-07, Standard Practice for Conducting Force Controlled Constant Amplitude Axial Fatigue Test of Metallic Materials, ASTM International, (2013).
DOI: 10.1520/e0466-96
Google Scholar
[12]
Elements of Metallurgy and Engineering Alloys, Chapter 14 Fatigue, ASM International, (2008).
Google Scholar
[13]
P. Gallo, F. Berto, P. Lazzarin, P. Luisetto, High temperature fatigue tests of Cu-Be and 40CrMoV13. 9 alloys. Procedia Materials Science 3 (2014) 27 - 32.
DOI: 10.1016/j.mspro.2014.06.007
Google Scholar
[14]
O. Fatoba, R. Akid, Low cycle fatigue behaviour of API 5LX65 pipeline steel at room temperature, Procedia Engineering. 74 (2014) 279 - 286.
DOI: 10.1016/j.proeng.2014.06.263
Google Scholar
[15]
B. Boardman, Deere, ASM Handbook, Volume 1: Properties and Selection: Irons, Steels, and High-Performance Alloys, in: ASM International, 1990, pp.673-688.
DOI: 10.31399/asm.hb.v01.9781627081610
Google Scholar
[16]
M. Mohammad, S. Abdullah, N. Jamaludin, O. Innayatullah, Predicting the fatigue life of the SAE 1045 steel using an empirical Weibull-based model associated to acoustic emission parameters, Materials & Design. 54 (2014) 1039 - 1048.
DOI: 10.1016/j.matdes.2013.09.021
Google Scholar