Simulation of Structure Formation Processes of Dissimilar Steels Welded Joints Using an Intermediate Layer

Article Preview

Abstract:

This paper shows the results of solving a 3D problem to define types of structures and tensions which can appear during the butt contact welding process of dissimilar steels through low carbon steel inserts. The finite element method to calculate welded structures was used. The thickness of inserts was the main variable parameter. According to the results of numerical simulation using inserts can increase the reliability of welded joints between pearlitic high-carbon steel and austenitic chromium-nickel steel. The best result was obtained by using an insert with a thickness less than 20 mm. Structural studies of the welded joints between high-carbon steel and chromium-nickel steel through low-carbon inserts confirm the results of mathematical modeling.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

218-224

Citation:

Online since:

August 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] V.S. Lozhkin, E.A. Lozhkina, V.I. Mali, M.A. Esikov, Structure and mechanical properties of multilayered composite material, formed by explosive welding of steel 12Х18Н10Т and steel Н18К9М5Т thin plates, Obrabotka metallov (tekhnologiya, oborudovanie, instrumenty) (in Russian). 64 (2014).

Google Scholar

[2] Mohammad Hosein Bina, Farshid Dehghani, Mahmoud Salimi, Effect of heat treatment on bonding interface in explosive welded copper/stainless steel, Materials & Design. 45 (2013) 504-509.

DOI: 10.1016/j.matdes.2012.09.037

Google Scholar

[3] I.A. Bataev, A.A. Bataev, V.I. Mali, D.V. Pavliukova, Structural and mechanical properties of metallic–intermetallic laminate composites produced by explosive welding and annealing, Materials & Design. 35 (2012) 225-234.

DOI: 10.1016/j.matdes.2011.09.030

Google Scholar

[4] I.A. Bataev, A.A. Bataev, D.V. Pavlyukova, P.S. Yartsev, E.D. Golovin, V.I. Mali, Nucleation and growth of titanium aluminide in an explosion-welded laminate composite, The Physics of Metals and Metallography. 10 (2012) 947-956.

DOI: 10.1134/s0031918x12070022

Google Scholar

[5] Yajiang Li, Peng Liu, Juan Wang, Haijun Ma, XRD and SEM analysis near the diffusion bonding interface of Mg/Al dissimilar materials, Vacuum. 82 (2008) 15–19.

DOI: 10.1016/j.vacuum.2007.01.073

Google Scholar

[6] P. He, D. Liu, Mechanism of forming interfacial intermetallic compounds at interface for solid state diffusion bonding of dissimilar materials, Materials Science and Engineering A. 437 (2006) 430-435.

DOI: 10.1016/j.msea.2006.08.019

Google Scholar

[7] Z. Shen, Y. Chen, M. Haghshenas, A.P. Gerlich, Role of welding parameters on interfacial bonding in dissimilar steel/aluminum friction stir welds, Engineering Science and Technology, an International Journal. In Press, http: /dx. doi. org/10. 1016/j. jestch. 2014. 12. 008.

DOI: 10.1016/j.jestch.2014.12.008

Google Scholar

[8] Tsutomu Tanaka, Taiki Morishige, Tomotake Hirata, Comprehensive analysis of joint strength for dissimilar friction stir welds of mild steel to aluminum alloys, Scripta Materialia. 61 (2009) 756–759.

DOI: 10.1016/j.scriptamat.2009.06.022

Google Scholar

[9] I. Celikyüreka, O. Torun, B. Baksan, Microstructure and strength of friction-welded Fe–28Al and 316 L stainless steel, Materials Science and Engineering A. 528 (2011) 8530– 8536.

DOI: 10.1016/j.msea.2011.08.021

Google Scholar

[10] M.J. Torkamany, J. Sabbaghzadeh, M.J. Hamedi, Effect of laser welding mode on the microstructure and mechanical performance of dissimilar laser spot welds between low carbon and austenitic stainless steels, Materials & Design. 34 (2012) 666-672.

DOI: 10.1016/j.matdes.2011.05.024

Google Scholar

[11] Shusen Zhao, Gang Yu, Xiuli He, Yongjie Zhang, Weijian Ning, Numerical simulation and experimental investigation of laser overlap welding of Ti6Al4V and 42CrMo, Journal of Materials Processing Technology. 211 (2011) 530-537.

DOI: 10.1016/j.jmatprotec.2010.11.007

Google Scholar

[12] B. Majumdar, R. Galun, A. Weisheit, B.L. Mordike, Formation of a crack-free joint between Ti alloy and Al alloy by using a high-power CO2 laser, Journal of Materials Science, 32 (1997) 6191-6200.

DOI: 10.1023/a:1018620723793

Google Scholar

[13] Fucheng Zhang, Bo Lv, Baitao Hu, Yanguo Li, Flash butt welding of high manganese steel crossing and carbon steel rail, Materials Science and Engineering A, 454–455 (2007) 288-292.

DOI: 10.1016/j.msea.2006.11.018

Google Scholar

[14] A.A. Nikulina, A.A. Bataev, A.I. Smirnov, A.I. Popelyukh, V.G. Burov, S.V. Veselov, Microstructure and fracture behaviour of flash butt welds between dissimilar steels, Science and Technology of Welding and Joining. 2 (2015) 138-144.

DOI: 10.1179/1362171814y.0000000265

Google Scholar

[15] Mahmood Sharifitabar, Ayyub Halvaee, Resistance upset butt welding of austenitic to martensitic stainless steels, Materials and Design. 31 (2010) 3044-3050.

DOI: 10.1016/j.matdes.2010.01.026

Google Scholar

[16] I.N. Maliutina, V.I. Mali, K.A. Skorokhod, Microstructure and strength of explosively welded titanium/Ni-based alloy composite with Cu/Ta as interlayer, Applied Mechanics and Materials. 682 (2014) 21-24.

DOI: 10.4028/www.scientific.net/amm.682.21

Google Scholar

[17] S. Kundu, S. Chatterjee, Characterization of diffusion bonded joint between titanium and 304 stainless steel using a Ni interlayer, Materials characterization 59 (2008) 631-637.

DOI: 10.1016/j.matchar.2007.05.015

Google Scholar

[18] S. Chen, J. Huang, K. Ma, H. Zhang, X. Zhao, Influence of a Ni-foil interlayer on Fe/Al dissimilar joint by laser penetration welding, Materials Letters. 79 (2012) 296-299.

DOI: 10.1016/j.matlet.2012.03.073

Google Scholar

[19] I. Tomashchuk, P. Sallamand, N. Belyavina, M. Pilloz, Evolution of microstructures and mechanical properties during dissimilar electron beam welding of titanium alloy to stainless steel via copper interlayer, Materials Science & Engineering A. 585 (2013).

DOI: 10.1016/j.msea.2013.07.050

Google Scholar

[20] S. Kundu, M. Ghosh, A. Laik, K. Bhanumurthy, G.B. Kale, S. Chatterjee, Diffusion bonding of commercially pure titanium to 304 stainless steel using copper interlayer, Materials Science and Engineering A. 407 (2005) 154-160.

DOI: 10.1016/j.msea.2005.07.010

Google Scholar

[21] M.K. Lee, J.G. Lee, Y.H. Choi, D.W. Kim, C.K. Rhee, Y.B. Lee, S.J. Hong, Interlayer engineering for dissimilar bonding of titanium to stainless steel, Materials Letters. 64 (2010) 1105-1108.

DOI: 10.1016/j.matlet.2010.02.024

Google Scholar

[22] H.M. Li, D.Q. Sun, X.L. Cai, P. Dong, W.Q. Wang, Laser welding of TiNi shape memory alloy and stainless steel using Ni interlayer, Materials and Design. 39 (2012) 285-293.

DOI: 10.1016/j.matdes.2012.02.031

Google Scholar

[23] S. Zakipour, M. Samavatian, A. Halvaee, A. Amadeh, A. Khodabandeh, The effect of interlayer thickness on liquid state diffusion bonding behavior of dissimilar stainless steel 316/Ti-6Al-4V system, Materials Letters. 142 (2015) 168-171.

DOI: 10.1016/j.matlet.2014.11.158

Google Scholar

[24] Jian Zhang, Qiang Shen, Guoqiang Luo, Meijuan Li, Lianmeng Zhang, Microstructure and bonding strength of diffusion welding of Mo/Cu joints with Ni interlayer, Materials & Design. 39 (2012) 81-86.

DOI: 10.1016/j.matdes.2012.02.032

Google Scholar

[25] A.A. Nikulina, V.G. Burov, A.A. Bataev, V.A. Bataev, Microstructure of the welded joints of frog and rail, Obrabotka metallov (tekhnologiya, oborudovanie, instrumenty) (in Russian) 34 (2007) 32-34.

Google Scholar

[26] G. Madhusudhan Reddy, P. Venkata Ramana, Role of nickel as an interlayer in dissimilar metal friction welding of maraging steel to low alloy steel, Journal of Materials Processing Technology. 212 (2012) 66-77.

DOI: 10.1016/j.jmatprotec.2011.08.005

Google Scholar

[27] J. Blumauer, Voest-Alpine Eisenbahnsysteme Gesellschaft m. b.H. Method for connection of railway point components consisting of cast hard manganese steel or manganese steel rails to a rail made from carbon steel, US Patent 5170932, published 15 December (1992).

DOI: 10.3403/30165592u

Google Scholar

[28] A.A. Bataev, V.A. Bataev, V.G. Burov, A.A. Nikulina, E.E. Zaharevich, I.A. Bataev, E.D. Golovin, A. Ognyov, G.P. Ilyin, V.F. Ezhak, S.V. Khlebnikov, NSTU: Method for weld joint of manganese steel frog and carbon steel rail, RU Patent 2361030, published 10 June (2009).

Google Scholar

[29] A.A. Chevakinskaya, A.A. Nikulina, N.V. Plotnikova, Reliability increase of dissimilar steel welded joints, Applied Mechanics and Materials. 698 (2015) 378-381.

DOI: 10.4028/www.scientific.net/amm.698.378

Google Scholar

[30] I. Tomashchuk, P. Sallamand, J.M. Jouvard, Multiphysical modeling of dissimilar welding via interlayer, Journal of Materials Processing Technology. 211 (2011) 1796-1803.

DOI: 10.1016/j.jmatprotec.2011.06.004

Google Scholar

[31] A.A. Nikulina, V. Yu. Skeeba, E.E. Kornienko, E.N. Mironov, Simulation of structurization in the welded joint between dissimilar steels, Obrabotka metallov (tekhnologiya, oborudovanie, instrumenty) (in Russian) 53 (2011) 54-61.

Google Scholar

[32] Chin-Hyung Lee, Kyong-Ho Chang, Temperature fields and residual stress distributions in dissimilar steel butt welds between carbon and stainless steels, Applied Thermal Engineering. 45-46 (2012) 33-41.

DOI: 10.1016/j.applthermaleng.2012.04.007

Google Scholar

[33] I. Tomashchuk, P. Sallamand, J.M. Jouvard, The modeling of dissimilar welding of immiscible materials by using a phase field method, Applied Mathematics and Computation. 219 (2013) 7103-7114.

DOI: 10.1016/j.amc.2012.01.039

Google Scholar

[34] V. Skeeba, V. Ivancivsky, V. Pushnin, Numerical modeling of steel surface hardening in the process of high energy heating by high frequency currents, Applied Mechanics and Materials. 698 (2015) 288-293.

DOI: 10.4028/www.scientific.net/amm.698.288

Google Scholar