[1]
V.S. Lozhkin, E.A. Lozhkina, V.I. Mali, M.A. Esikov, Structure and mechanical properties of multilayered composite material, formed by explosive welding of steel 12Х18Н10Т and steel Н18К9М5Т thin plates, Obrabotka metallov (tekhnologiya, oborudovanie, instrumenty) (in Russian). 64 (2014).
Google Scholar
[2]
Mohammad Hosein Bina, Farshid Dehghani, Mahmoud Salimi, Effect of heat treatment on bonding interface in explosive welded copper/stainless steel, Materials & Design. 45 (2013) 504-509.
DOI: 10.1016/j.matdes.2012.09.037
Google Scholar
[3]
I.A. Bataev, A.A. Bataev, V.I. Mali, D.V. Pavliukova, Structural and mechanical properties of metallic–intermetallic laminate composites produced by explosive welding and annealing, Materials & Design. 35 (2012) 225-234.
DOI: 10.1016/j.matdes.2011.09.030
Google Scholar
[4]
I.A. Bataev, A.A. Bataev, D.V. Pavlyukova, P.S. Yartsev, E.D. Golovin, V.I. Mali, Nucleation and growth of titanium aluminide in an explosion-welded laminate composite, The Physics of Metals and Metallography. 10 (2012) 947-956.
DOI: 10.1134/s0031918x12070022
Google Scholar
[5]
Yajiang Li, Peng Liu, Juan Wang, Haijun Ma, XRD and SEM analysis near the diffusion bonding interface of Mg/Al dissimilar materials, Vacuum. 82 (2008) 15–19.
DOI: 10.1016/j.vacuum.2007.01.073
Google Scholar
[6]
P. He, D. Liu, Mechanism of forming interfacial intermetallic compounds at interface for solid state diffusion bonding of dissimilar materials, Materials Science and Engineering A. 437 (2006) 430-435.
DOI: 10.1016/j.msea.2006.08.019
Google Scholar
[7]
Z. Shen, Y. Chen, M. Haghshenas, A.P. Gerlich, Role of welding parameters on interfacial bonding in dissimilar steel/aluminum friction stir welds, Engineering Science and Technology, an International Journal. In Press, http: /dx. doi. org/10. 1016/j. jestch. 2014. 12. 008.
DOI: 10.1016/j.jestch.2014.12.008
Google Scholar
[8]
Tsutomu Tanaka, Taiki Morishige, Tomotake Hirata, Comprehensive analysis of joint strength for dissimilar friction stir welds of mild steel to aluminum alloys, Scripta Materialia. 61 (2009) 756–759.
DOI: 10.1016/j.scriptamat.2009.06.022
Google Scholar
[9]
I. Celikyüreka, O. Torun, B. Baksan, Microstructure and strength of friction-welded Fe–28Al and 316 L stainless steel, Materials Science and Engineering A. 528 (2011) 8530– 8536.
DOI: 10.1016/j.msea.2011.08.021
Google Scholar
[10]
M.J. Torkamany, J. Sabbaghzadeh, M.J. Hamedi, Effect of laser welding mode on the microstructure and mechanical performance of dissimilar laser spot welds between low carbon and austenitic stainless steels, Materials & Design. 34 (2012) 666-672.
DOI: 10.1016/j.matdes.2011.05.024
Google Scholar
[11]
Shusen Zhao, Gang Yu, Xiuli He, Yongjie Zhang, Weijian Ning, Numerical simulation and experimental investigation of laser overlap welding of Ti6Al4V and 42CrMo, Journal of Materials Processing Technology. 211 (2011) 530-537.
DOI: 10.1016/j.jmatprotec.2010.11.007
Google Scholar
[12]
B. Majumdar, R. Galun, A. Weisheit, B.L. Mordike, Formation of a crack-free joint between Ti alloy and Al alloy by using a high-power CO2 laser, Journal of Materials Science, 32 (1997) 6191-6200.
DOI: 10.1023/a:1018620723793
Google Scholar
[13]
Fucheng Zhang, Bo Lv, Baitao Hu, Yanguo Li, Flash butt welding of high manganese steel crossing and carbon steel rail, Materials Science and Engineering A, 454–455 (2007) 288-292.
DOI: 10.1016/j.msea.2006.11.018
Google Scholar
[14]
A.A. Nikulina, A.A. Bataev, A.I. Smirnov, A.I. Popelyukh, V.G. Burov, S.V. Veselov, Microstructure and fracture behaviour of flash butt welds between dissimilar steels, Science and Technology of Welding and Joining. 2 (2015) 138-144.
DOI: 10.1179/1362171814y.0000000265
Google Scholar
[15]
Mahmood Sharifitabar, Ayyub Halvaee, Resistance upset butt welding of austenitic to martensitic stainless steels, Materials and Design. 31 (2010) 3044-3050.
DOI: 10.1016/j.matdes.2010.01.026
Google Scholar
[16]
I.N. Maliutina, V.I. Mali, K.A. Skorokhod, Microstructure and strength of explosively welded titanium/Ni-based alloy composite with Cu/Ta as interlayer, Applied Mechanics and Materials. 682 (2014) 21-24.
DOI: 10.4028/www.scientific.net/amm.682.21
Google Scholar
[17]
S. Kundu, S. Chatterjee, Characterization of diffusion bonded joint between titanium and 304 stainless steel using a Ni interlayer, Materials characterization 59 (2008) 631-637.
DOI: 10.1016/j.matchar.2007.05.015
Google Scholar
[18]
S. Chen, J. Huang, K. Ma, H. Zhang, X. Zhao, Influence of a Ni-foil interlayer on Fe/Al dissimilar joint by laser penetration welding, Materials Letters. 79 (2012) 296-299.
DOI: 10.1016/j.matlet.2012.03.073
Google Scholar
[19]
I. Tomashchuk, P. Sallamand, N. Belyavina, M. Pilloz, Evolution of microstructures and mechanical properties during dissimilar electron beam welding of titanium alloy to stainless steel via copper interlayer, Materials Science & Engineering A. 585 (2013).
DOI: 10.1016/j.msea.2013.07.050
Google Scholar
[20]
S. Kundu, M. Ghosh, A. Laik, K. Bhanumurthy, G.B. Kale, S. Chatterjee, Diffusion bonding of commercially pure titanium to 304 stainless steel using copper interlayer, Materials Science and Engineering A. 407 (2005) 154-160.
DOI: 10.1016/j.msea.2005.07.010
Google Scholar
[21]
M.K. Lee, J.G. Lee, Y.H. Choi, D.W. Kim, C.K. Rhee, Y.B. Lee, S.J. Hong, Interlayer engineering for dissimilar bonding of titanium to stainless steel, Materials Letters. 64 (2010) 1105-1108.
DOI: 10.1016/j.matlet.2010.02.024
Google Scholar
[22]
H.M. Li, D.Q. Sun, X.L. Cai, P. Dong, W.Q. Wang, Laser welding of TiNi shape memory alloy and stainless steel using Ni interlayer, Materials and Design. 39 (2012) 285-293.
DOI: 10.1016/j.matdes.2012.02.031
Google Scholar
[23]
S. Zakipour, M. Samavatian, A. Halvaee, A. Amadeh, A. Khodabandeh, The effect of interlayer thickness on liquid state diffusion bonding behavior of dissimilar stainless steel 316/Ti-6Al-4V system, Materials Letters. 142 (2015) 168-171.
DOI: 10.1016/j.matlet.2014.11.158
Google Scholar
[24]
Jian Zhang, Qiang Shen, Guoqiang Luo, Meijuan Li, Lianmeng Zhang, Microstructure and bonding strength of diffusion welding of Mo/Cu joints with Ni interlayer, Materials & Design. 39 (2012) 81-86.
DOI: 10.1016/j.matdes.2012.02.032
Google Scholar
[25]
A.A. Nikulina, V.G. Burov, A.A. Bataev, V.A. Bataev, Microstructure of the welded joints of frog and rail, Obrabotka metallov (tekhnologiya, oborudovanie, instrumenty) (in Russian) 34 (2007) 32-34.
Google Scholar
[26]
G. Madhusudhan Reddy, P. Venkata Ramana, Role of nickel as an interlayer in dissimilar metal friction welding of maraging steel to low alloy steel, Journal of Materials Processing Technology. 212 (2012) 66-77.
DOI: 10.1016/j.jmatprotec.2011.08.005
Google Scholar
[27]
J. Blumauer, Voest-Alpine Eisenbahnsysteme Gesellschaft m. b.H. Method for connection of railway point components consisting of cast hard manganese steel or manganese steel rails to a rail made from carbon steel, US Patent 5170932, published 15 December (1992).
DOI: 10.3403/30165592u
Google Scholar
[28]
A.A. Bataev, V.A. Bataev, V.G. Burov, A.A. Nikulina, E.E. Zaharevich, I.A. Bataev, E.D. Golovin, A. Ognyov, G.P. Ilyin, V.F. Ezhak, S.V. Khlebnikov, NSTU: Method for weld joint of manganese steel frog and carbon steel rail, RU Patent 2361030, published 10 June (2009).
Google Scholar
[29]
A.A. Chevakinskaya, A.A. Nikulina, N.V. Plotnikova, Reliability increase of dissimilar steel welded joints, Applied Mechanics and Materials. 698 (2015) 378-381.
DOI: 10.4028/www.scientific.net/amm.698.378
Google Scholar
[30]
I. Tomashchuk, P. Sallamand, J.M. Jouvard, Multiphysical modeling of dissimilar welding via interlayer, Journal of Materials Processing Technology. 211 (2011) 1796-1803.
DOI: 10.1016/j.jmatprotec.2011.06.004
Google Scholar
[31]
A.A. Nikulina, V. Yu. Skeeba, E.E. Kornienko, E.N. Mironov, Simulation of structurization in the welded joint between dissimilar steels, Obrabotka metallov (tekhnologiya, oborudovanie, instrumenty) (in Russian) 53 (2011) 54-61.
Google Scholar
[32]
Chin-Hyung Lee, Kyong-Ho Chang, Temperature fields and residual stress distributions in dissimilar steel butt welds between carbon and stainless steels, Applied Thermal Engineering. 45-46 (2012) 33-41.
DOI: 10.1016/j.applthermaleng.2012.04.007
Google Scholar
[33]
I. Tomashchuk, P. Sallamand, J.M. Jouvard, The modeling of dissimilar welding of immiscible materials by using a phase field method, Applied Mathematics and Computation. 219 (2013) 7103-7114.
DOI: 10.1016/j.amc.2012.01.039
Google Scholar
[34]
V. Skeeba, V. Ivancivsky, V. Pushnin, Numerical modeling of steel surface hardening in the process of high energy heating by high frequency currents, Applied Mechanics and Materials. 698 (2015) 288-293.
DOI: 10.4028/www.scientific.net/amm.698.288
Google Scholar