[1]
A.M. Lyapunov, Stability of Motion Academic Press, New York, USA 1892.
Google Scholar
[2]
O. Perron, Die Ordnungszahlen linearer Differentialgleichungssysteme, Mathematische Zeitschrift 31 (1929) 748-766. (German).
DOI: 10.1007/bf01246445
Google Scholar
[3]
L. Arnold, H. Crauel, J.P. Eckmann, Lyapunov Exponents, Lecture Notes in Mathematics, Springer-Verlag, Heidelberg, Germany (2000).
Google Scholar
[4]
A. Czornik, P. Jurgas, Set of possible values of maximal Lyapunov exponents of discrete time-varying linear system, Automatica 44(2) (2008) 580-583.
DOI: 10.1016/j.automatica.2007.06.028
Google Scholar
[5]
A. Czornik, M. Niezabitowski, On the spectrum of discrete time-varying linear systems, Nonlinear Analysis: Hybrid Systems 9 (2013) 27-41.
DOI: 10.1016/j.nahs.2013.01.004
Google Scholar
[6]
A. Czornik, A. Nawrat, M. Niezabitowski, On the Lyapunov exponents of a class of the second order discrete time linear systems with bounded perturbations, Dynamical Systems: An International Journal 28 (4) (2013) 473-483.
DOI: 10.1080/14689367.2012.748718
Google Scholar
[7]
A. Czornik, M. Niezabitowski, Lyapunov exponents for systems with unbounded coefficients, Dynamical Systems: An International Journal 28(2) (2013) 140-153.
DOI: 10.1080/14689367.2012.742038
Google Scholar
[8]
A. Czornik, M. Niezabitowski, Lyapunov exponents for systems with unbounded coefficients, Dynamical Systems: An International Journal 28(2) (2013) 299-299.
DOI: 10.1080/14689367.2012.756700
Google Scholar
[9]
A. Czornik, M. Niezabitowski, On the stability of Lyapunov exponents of discrete linear systems, Proceedings of the European Control Conference 2013, 17-19. 07. 2013, Zurych, Switzerland (2013) 2210-2213.
DOI: 10.23919/ecc.2013.6669149
Google Scholar
[10]
A. Czornik, A. Nawrat, On the perturbations of the Lyapunov exponents of discrete linear system, Proceedings of the 19th Mediterranean Conference on Control & Automation (MED 2011), Corfu, Greece, 20-23. 06. 2011, 378-381.
DOI: 10.1109/med.2011.5982994
Google Scholar
[11]
Q-D. Li, J-L. Guo, Algorithm for calculating the Lyapunov exponents of switching system and its application, Acta Physica Sinica 63(10) art. 100501 (2014).
DOI: 10.7498/aps.63.100501
Google Scholar
[12]
K. Kanno, A. Uchida, Finite-time Lyapunov exponents in time-delayed nonlinear dynamical systems, Physical Review E - Statistical, Nonlinear, and Soft Matter Physics 89(3) art. 032918 (2014).
DOI: 10.1103/physreve.89.032918
Google Scholar
[13]
N.D. Cong, D.T. Son, H.T. Tuan, On fractional lyapunov exponent for solutions of linear fractional differential equations, Fractional calculus and applied analysis 17(2) (2014) 285-306.
DOI: 10.2478/s13540-014-0169-1
Google Scholar
[14]
O. Gorshkov, Estimation of the largest Lyapunov exponent for long-range correlated stochastic time series, Proceedings of the 11th International Conference of Numerical Analysis and Applied Mathematics (ICNAAM), 21-27, 2013, Greece, 1558 (2013).
DOI: 10.1063/1.4826053
Google Scholar
[15]
S.M. Bruijn, D.J.J. Bregman, O.G. Meijer, P.J. Beek, J.H. van Dieen, Maximum Lyapunov exponents as predictors of global gait stability: a modelling approach, Medical Engineering & Physics 34(4) (2012) 428-436.
DOI: 10.1016/j.medengphy.2011.07.024
Google Scholar
[16]
J. Mierczynski, W. Shen, Principal Lyapunov exponents and principal Floquet spaces of positive random dynamical systems. I. General theory, Transactions of the American Mathematical Society 365(10) (2013) 5329-5365.
DOI: 10.1090/s0002-9947-2013-05814-x
Google Scholar
[17]
J. Mierczynski, W. Shen, Principal Lyapunov exponents and principal Floquet spaces of positive random dynamical systems. II. Finite-dimensional systems, Journal of Mathematical Analysis and Applications 404(2) (2013) 438-458.
DOI: 10.1016/j.jmaa.2013.03.039
Google Scholar
[18]
F.L. Dubeibe, L.D. Bermudez-Almanza, Optimal conditions for the numerical calculation of the largest Lyapunov exponent for systems of ordinary differential equations, International Journal of Modern Physics C 25(7) art. 1450024 (2014).
DOI: 10.1142/s0129183114500247
Google Scholar
[19]
A. Czornik, Bounds for characteristic exponents of discrete linear time varying systems, Journal of the Franklin Institute-engineering and applied mathematics 347(2) (2010) 502-507.
DOI: 10.1016/j.jfranklin.2009.10.017
Google Scholar
[20]
A. Czornik, A. Nawrat, On new estimates for Lyapunov exponents of discrete time varying linear systems, Automatica 46 (2010) 775-778.
DOI: 10.1016/j.automatica.2010.01.014
Google Scholar
[21]
A. Czornik, On the Perron exponents of discrete linear systems, Linear Algebra and Its Applications 432(1) (2010) 394-401.
DOI: 10.1016/j.laa.2009.08.021
Google Scholar
[22]
A. Czornik, J. Klamka, M. Niezabitowski, On the set of Perron exponents of discrete linear systems, Proceedings of the World Congress of the 19th International Federation of Automatic Control, 24-29. 08. 2014, Cape Town, South Africa (2014).
DOI: 10.3182/20140824-6-za-1003.00010
Google Scholar
[23]
P. Bohl, Uber Differentialungleichungen, Journal fur die reine und angewandte Mathematik 144 (1913) 284-318.
Google Scholar
[24]
E.A. Barabanov, A.V. Konyukh, Bohl exponents of linear differential systems, Memoirs on Differential Equations and Mathematical Physics 24 (2001) 151-158.
Google Scholar
[25]
K.P. Persidskii, On one theorem concerning motion stability, Izv. Fiz. -Mat. Ob-va pri Kazansk Un-te 6 (1932) 76-79. (Russian).
Google Scholar
[26]
K.P. Persidskii, To the stability theory of differential equations' system integrals, Izv. Fiz. -Mat. Ob-va pri Kazansk Un-te 8 (1936) 47-85. (Russian).
Google Scholar
[27]
V.M. Millionshchikov, Rough properties of linear systems of differential equations, Differentsial'nye Uravneniya 5 (1969) 1775-1784. (Russian).
Google Scholar
[28]
V.M. Millionshchikov, Stability criterion for a possible spectrum of linear systems of differential equations with recurrent coefficients and a criterion for almost reducibility of systems with almost periodic coefficients, Mat. Sb. 78 (1969).
DOI: 10.1070/sm1969v007n02abeh001083
Google Scholar
[29]
B.F. Bylov, On almost reducibility for a system of linear differential equations having different characteristic exponents, Sibirsk: Mat. Zh. 4 (1963) 1241-1262. (Russian).
Google Scholar
[30]
E.A. Barabanov, A.V. Konyukh, Uniform exponents of linear-systems of differential-equations, Differential Equations 30(10) (1994) 1536-1545 (translation from Differentsial'nye Uravneniya, 30(10) (1994) 1665-1676).
Google Scholar
[31]
A.V. Konyukh, Upper singular exponents and Lyapunov and Bohl exponents of typical systems of linear differential equations, Doklady of the National Academy of Sciences of Belarus 51(5) (2007) 28-32. (Russian).
Google Scholar
[32]
K.M. Przyluski, Remarks on the stability of linear infinite-dimensional discrete-time systems, Journal of Differential Equations 72 (1988) 189-200.
DOI: 10.1016/0022-0396(88)90155-6
Google Scholar
[33]
F. Wirth, On stability of infinite-dimensional discrete inclusions, Journal of Mathematical Systems, Estimation, and Control 8(4) (1998) 507-510.
Google Scholar
[34]
M. Niezabitowski, About the properties of the upper Bohl exponents of diagonal discrete linear time-varying systems, Proceedings of the 19th International Conference on Methods and Models in Automation and Robotics, 02-05. 09. 2014, Miedzyzdroje, Poland, 880-884 (2014).
DOI: 10.1109/mmar.2014.6957473
Google Scholar
[35]
A. Czornik, J. Klamka, M. Niezabitowski, About the number of the lower Bohl exponents of diagonal discrete linear time-varying systems, Proceedings of the 11th IEEE International Conference on Control & Automation, 18-20. 06. 2014, Taichung, Taiwan, 461-466 (2014).
DOI: 10.1109/icca.2014.6870964
Google Scholar
[36]
A. Czornik, The relations between the senior upper general exponent and the upper Bohl exponents, Proceedings of the 19th International Conference on Methods and Models in Automation and Robotics, 02-05. 09. 2014, Międzyzdroje, Poland, 897-902 (2014).
DOI: 10.1109/mmar.2014.6957476
Google Scholar
[37]
A. Czornik, P. Mokry, A. Nawrat, On the exponential exponents of discrete linear systems, Linear Algebra and Its Applications, 433(4) (2010) 867-875.
DOI: 10.1016/j.laa.2010.04.019
Google Scholar
[38]
A. Czornik, P. Mokry, A. Nawrat, On the Sigma Exponent of Discrete Linear Systems, IEEE Transaction on Automatic Control 55(6) (2010) 1511-1515.
DOI: 10.1109/tac.2010.2045699
Google Scholar
[39]
A. Czornik, A. Nawrat, On the perturbations preserving spectrum of discrete linear systems, Journal of Difference Equations and Applications 17(1) (2001) 57-67.
DOI: 10.1080/10236190902919343
Google Scholar
[40]
A. Czornik, A. Nawrat, On the central exponent of discrete time-varying linear systems, Proceedings of the 21st International Conference on Systems Engineering, Las Vegas, NV, USA, 16-18. 08. 2011, 22-25.
DOI: 10.1109/icseng.2011.12
Google Scholar
[41]
A. Czornik, A. Nawrat, On the central exponents of discrete linear system, Proceedings of the International Conference on Automation, Robotics and Control Systems (ARCS-09), Orlando, FL, USA, 13-16. 07. 2009, 6-9.
Google Scholar
[42]
A. Czornik, P. Mokry, M. Niezabitowski, On a continuity of characteristic exponents of linear discrete time-varying systems, Archives of Control Science 22(1) (2012) 17-27.
DOI: 10.2478/v10170-011-0009-z
Google Scholar
[43]
A. Czornik, A. Nawrat, M. Niezabitowski, A. Szyda, On the Lyapunov and Bohl exponent of time-varying discrete linear system, Proceedings of the 20th Mediterranean Conference on Control and Automation, July 3-6, 2012, Barcelona, Spain, (2012).
DOI: 10.1109/med.2012.6265637
Google Scholar
[44]
A.V. Konyukh, Functional description of uniform exponents of linear diagonal differential-systems, Differential Equations 29(8) (1993) 1272-1275 (translation from Differentsial'nye Uravneniya, 29(8) (1993) 1465-1467).
Google Scholar