Properties of the Lower Bohl Exponents of Diagonal Discrete Linear Time-Varying Systems

Article Preview

Abstract:

The Bohl exponents, similarly as Lyapunov exponents, are one of the most important numerical characteristics of dynamical systems used in control theory. Properties of the Lyapunov characteristics are well described in the literature. Properties of the second above-mentioned exponents are much less investigated in the literature. In this paper we show an example of two-dimensional discrete time-varying linear system with bounded coefficients for which the number of lower Bohl exponents of solutions may be greater than dimension of the system.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

1052-1058

Citation:

Online since:

September 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] A.M. Lyapunov, Stability of Motion Academic Press, New York, USA 1892.

Google Scholar

[2] O. Perron, Die Ordnungszahlen linearer Differentialgleichungssysteme, Mathematische Zeitschrift 31 (1929) 748-766. (German).

DOI: 10.1007/bf01246445

Google Scholar

[3] L. Arnold, H. Crauel, J.P. Eckmann, Lyapunov Exponents, Lecture Notes in Mathematics, Springer-Verlag, Heidelberg, Germany (2000).

Google Scholar

[4] A. Czornik, P. Jurgas, Set of possible values of maximal Lyapunov exponents of discrete time-varying linear system, Automatica 44(2) (2008) 580-583.

DOI: 10.1016/j.automatica.2007.06.028

Google Scholar

[5] A. Czornik, M. Niezabitowski, On the spectrum of discrete time-varying linear systems, Nonlinear Analysis: Hybrid Systems 9 (2013) 27-41.

DOI: 10.1016/j.nahs.2013.01.004

Google Scholar

[6] A. Czornik, A. Nawrat, M. Niezabitowski, On the Lyapunov exponents of a class of the second order discrete time linear systems with bounded perturbations, Dynamical Systems: An International Journal 28 (4) (2013) 473-483.

DOI: 10.1080/14689367.2012.748718

Google Scholar

[7] A. Czornik, M. Niezabitowski, Lyapunov exponents for systems with unbounded coefficients, Dynamical Systems: An International Journal 28(2) (2013) 140-153.

DOI: 10.1080/14689367.2012.742038

Google Scholar

[8] A. Czornik, M. Niezabitowski, Lyapunov exponents for systems with unbounded coefficients, Dynamical Systems: An International Journal 28(2) (2013) 299-299.

DOI: 10.1080/14689367.2012.756700

Google Scholar

[9] A. Czornik, M. Niezabitowski, On the stability of Lyapunov exponents of discrete linear systems, Proceedings of the European Control Conference 2013, 17-19. 07. 2013, Zurych, Switzerland (2013) 2210-2213.

DOI: 10.23919/ecc.2013.6669149

Google Scholar

[10] A. Czornik, A. Nawrat, On the perturbations of the Lyapunov exponents of discrete linear system, Proceedings of the 19th Mediterranean Conference on Control & Automation (MED 2011), Corfu, Greece, 20-23. 06. 2011, 378-381.

DOI: 10.1109/med.2011.5982994

Google Scholar

[11] Q-D. Li, J-L. Guo, Algorithm for calculating the Lyapunov exponents of switching system and its application, Acta Physica Sinica 63(10) art. 100501 (2014).

DOI: 10.7498/aps.63.100501

Google Scholar

[12] K. Kanno, A. Uchida, Finite-time Lyapunov exponents in time-delayed nonlinear dynamical systems, Physical Review E - Statistical, Nonlinear, and Soft Matter Physics 89(3) art. 032918 (2014).

DOI: 10.1103/physreve.89.032918

Google Scholar

[13] N.D. Cong, D.T. Son, H.T. Tuan, On fractional lyapunov exponent for solutions of linear fractional differential equations, Fractional calculus and applied analysis 17(2) (2014) 285-306.

DOI: 10.2478/s13540-014-0169-1

Google Scholar

[14] O. Gorshkov, Estimation of the largest Lyapunov exponent for long-range correlated stochastic time series, Proceedings of the 11th International Conference of Numerical Analysis and Applied Mathematics (ICNAAM), 21-27, 2013, Greece, 1558 (2013).

DOI: 10.1063/1.4826053

Google Scholar

[15] S.M. Bruijn, D.J.J. Bregman, O.G. Meijer, P.J. Beek, J.H. van Dieen, Maximum Lyapunov exponents as predictors of global gait stability: a modelling approach, Medical Engineering & Physics 34(4) (2012) 428-436.

DOI: 10.1016/j.medengphy.2011.07.024

Google Scholar

[16] J. Mierczynski, W. Shen, Principal Lyapunov exponents and principal Floquet spaces of positive random dynamical systems. I. General theory, Transactions of the American Mathematical Society 365(10) (2013) 5329-5365.

DOI: 10.1090/s0002-9947-2013-05814-x

Google Scholar

[17] J. Mierczynski, W. Shen, Principal Lyapunov exponents and principal Floquet spaces of positive random dynamical systems. II. Finite-dimensional systems, Journal of Mathematical Analysis and Applications 404(2) (2013) 438-458.

DOI: 10.1016/j.jmaa.2013.03.039

Google Scholar

[18] F.L. Dubeibe, L.D. Bermudez-Almanza, Optimal conditions for the numerical calculation of the largest Lyapunov exponent for systems of ordinary differential equations, International Journal of Modern Physics C 25(7) art. 1450024 (2014).

DOI: 10.1142/s0129183114500247

Google Scholar

[19] A. Czornik, Bounds for characteristic exponents of discrete linear time varying systems, Journal of the Franklin Institute-engineering and applied mathematics 347(2) (2010) 502-507.

DOI: 10.1016/j.jfranklin.2009.10.017

Google Scholar

[20] A. Czornik, A. Nawrat, On new estimates for Lyapunov exponents of discrete time varying linear systems, Automatica 46 (2010) 775-778.

DOI: 10.1016/j.automatica.2010.01.014

Google Scholar

[21] A. Czornik, On the Perron exponents of discrete linear systems, Linear Algebra and Its Applications 432(1) (2010) 394-401.

DOI: 10.1016/j.laa.2009.08.021

Google Scholar

[22] A. Czornik, J. Klamka, M. Niezabitowski, On the set of Perron exponents of discrete linear systems, Proceedings of the World Congress of the 19th International Federation of Automatic Control, 24-29. 08. 2014, Cape Town, South Africa (2014).

DOI: 10.3182/20140824-6-za-1003.00010

Google Scholar

[23] P. Bohl, Uber Differentialungleichungen, Journal fur die reine und angewandte Mathematik 144 (1913) 284-318.

Google Scholar

[24] E.A. Barabanov, A.V. Konyukh, Bohl exponents of linear differential systems, Memoirs on Differential Equations and Mathematical Physics 24 (2001) 151-158.

Google Scholar

[25] K.P. Persidskii, On one theorem concerning motion stability, Izv. Fiz. -Mat. Ob-va pri Kazansk Un-te 6 (1932) 76-79. (Russian).

Google Scholar

[26] K.P. Persidskii, To the stability theory of differential equations' system integrals, Izv. Fiz. -Mat. Ob-va pri Kazansk Un-te 8 (1936) 47-85. (Russian).

Google Scholar

[27] V.M. Millionshchikov, Rough properties of linear systems of differential equations, Differentsial'nye Uravneniya 5 (1969) 1775-1784. (Russian).

Google Scholar

[28] V.M. Millionshchikov, Stability criterion for a possible spectrum of linear systems of differential equations with recurrent coefficients and a criterion for almost reducibility of systems with almost periodic coefficients, Mat. Sb. 78 (1969).

DOI: 10.1070/sm1969v007n02abeh001083

Google Scholar

[29] B.F. Bylov, On almost reducibility for a system of linear differential equations having different characteristic exponents, Sibirsk: Mat. Zh. 4 (1963) 1241-1262. (Russian).

Google Scholar

[30] E.A. Barabanov, A.V. Konyukh, Uniform exponents of linear-systems of differential-equations, Differential Equations 30(10) (1994) 1536-1545 (translation from Differentsial'nye Uravneniya, 30(10) (1994) 1665-1676).

Google Scholar

[31] A.V. Konyukh, Upper singular exponents and Lyapunov and Bohl exponents of typical systems of linear differential equations, Doklady of the National Academy of Sciences of Belarus 51(5) (2007) 28-32. (Russian).

Google Scholar

[32] K.M. Przyluski, Remarks on the stability of linear infinite-dimensional discrete-time systems, Journal of Differential Equations 72 (1988) 189-200.

DOI: 10.1016/0022-0396(88)90155-6

Google Scholar

[33] F. Wirth, On stability of infinite-dimensional discrete inclusions, Journal of Mathematical Systems, Estimation, and Control 8(4) (1998) 507-510.

Google Scholar

[34] M. Niezabitowski, About the properties of the upper Bohl exponents of diagonal discrete linear time-varying systems, Proceedings of the 19th International Conference on Methods and Models in Automation and Robotics, 02-05. 09. 2014, Miedzyzdroje, Poland, 880-884 (2014).

DOI: 10.1109/mmar.2014.6957473

Google Scholar

[35] A. Czornik, J. Klamka, M. Niezabitowski, About the number of the lower Bohl exponents of diagonal discrete linear time-varying systems, Proceedings of the 11th IEEE International Conference on Control & Automation, 18-20. 06. 2014, Taichung, Taiwan, 461-466 (2014).

DOI: 10.1109/icca.2014.6870964

Google Scholar

[36] A. Czornik, The relations between the senior upper general exponent and the upper Bohl exponents, Proceedings of the 19th International Conference on Methods and Models in Automation and Robotics, 02-05. 09. 2014, Międzyzdroje, Poland, 897-902 (2014).

DOI: 10.1109/mmar.2014.6957476

Google Scholar

[37] A. Czornik, P. Mokry, A. Nawrat, On the exponential exponents of discrete linear systems, Linear Algebra and Its Applications, 433(4) (2010) 867-875.

DOI: 10.1016/j.laa.2010.04.019

Google Scholar

[38] A. Czornik, P. Mokry, A. Nawrat, On the Sigma Exponent of Discrete Linear Systems, IEEE Transaction on Automatic Control 55(6) (2010) 1511-1515.

DOI: 10.1109/tac.2010.2045699

Google Scholar

[39] A. Czornik, A. Nawrat, On the perturbations preserving spectrum of discrete linear systems, Journal of Difference Equations and Applications 17(1) (2001) 57-67.

DOI: 10.1080/10236190902919343

Google Scholar

[40] A. Czornik, A. Nawrat, On the central exponent of discrete time-varying linear systems, Proceedings of the 21st International Conference on Systems Engineering, Las Vegas, NV, USA, 16-18. 08. 2011, 22-25.

DOI: 10.1109/icseng.2011.12

Google Scholar

[41] A. Czornik, A. Nawrat, On the central exponents of discrete linear system, Proceedings of the International Conference on Automation, Robotics and Control Systems (ARCS-09), Orlando, FL, USA, 13-16. 07. 2009, 6-9.

Google Scholar

[42] A. Czornik, P. Mokry, M. Niezabitowski, On a continuity of characteristic exponents of linear discrete time-varying systems, Archives of Control Science 22(1) (2012) 17-27.

DOI: 10.2478/v10170-011-0009-z

Google Scholar

[43] A. Czornik, A. Nawrat, M. Niezabitowski, A. Szyda, On the Lyapunov and Bohl exponent of time-varying discrete linear system, Proceedings of the 20th Mediterranean Conference on Control and Automation, July 3-6, 2012, Barcelona, Spain, (2012).

DOI: 10.1109/med.2012.6265637

Google Scholar

[44] A.V. Konyukh, Functional description of uniform exponents of linear diagonal differential-systems, Differential Equations 29(8) (1993) 1272-1275 (translation from Differentsial'nye Uravneniya, 29(8) (1993) 1465-1467).

Google Scholar