Method of Heat Balances for Calculating Heat Transfer in Flat Multilayer Nanostructures

Article Preview

Abstract:

We suggest method of calculation of one-dimensional temperature field in multilayer nanostructures. Our method allows obtaining non-stationary temperature distribution in the periodical and non-periodical spatial structures with a different degree of periodicity. Comparison temperature distributions in the multilayer nanostructures and equivalent continuous samples are performed in this study. In addition we suggest experimental application of our method for estimation an average value of thermal Kapitza resistance.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

407-410

Citation:

Online since:

September 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] D.G. Cahill, W.K. Ford, K.E. Goodson, G.D. Mahan, R. Merin, H.J. Maris, S.R. Philpot, Nanoscale thermal transport, Appl. Phys. Rev. 93 (2003), p.793.

Google Scholar

[2] G. Chen, M. Neagu, Thermal conductivity and heat transfer in superlattices, Appl. Phys. Lett. 71 (1997), p.2761.

Google Scholar

[3] D. G. Cahill, P. V. Braun, G. Chen, D. R. Clarke, S. Fan, K. E. Goodson, P. Keblinski, W. P. King, G. D. Mahan, A. Majumdar, H. J. Maris, S. R. Phillpot, E. Pop and L. Shi., Nanoscale thermal transport. II. 2003-2012, Appl. Phys. Rev. 1 (2014).

DOI: 10.1063/1.4832615

Google Scholar

[4] R. M. Costescu, D. G. Cahill, F. H. Fabreguette, Z. A. Sechrist, S. M. George., Ultra-Low Thermal Conductivity in W/Al2O3 Nanolaminates, Science 303 (2004), p.989.

DOI: 10.1126/science.1093711

Google Scholar

[5] P.L. Kapiza, J. Phys. (Moscow) 4 (1941), p.181.

Google Scholar

[6] I.M. Khalatnikov, Introduction to the Theory of Superfluidity, Benjamin, New York (1965).

Google Scholar