Chemiresistor Gas Sensor Array Based on Conducting Polymers for the Discrimination of Virgin Coconut Oil

Article Preview

Abstract:

An array of chemiresistors based on conducting polymers was assembled for the differentiation of VCO. The chemiresistor sensors were fabricated through the potentiostatic electrodeposition of polyaniline, polypyrrole and poly (3-methylthiophene) on the gap separating two planar gold electrodes set on a Teflon substrate. The electrical resistance of the sensors were measured and observed to change when exposed to the headspace of oil samples. The sensor response was rapid and exhibited good reversibility and reproducibility. Different signals were obtained for each coconut oil sample and pattern recognition techniques were employed for the analysis of the data. The developed E-nose system was able to discriminate VCO from refined, bleached and deodorized coconut oil (RBDCO) and rancid VCO.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

554-559

Citation:

Online since:

September 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] C. S. Dayrit, The Truth About Coconut Oil- The Drugstore in a Bottle, 1st ed.: Anvil Publishing, Inc, (2005).

Google Scholar

[2] P. e. Cuniff, Official Methods of Analysis of AOAC International, 16th ed.: AOAC International, Maryland, USA, (1999).

Google Scholar

[3] A. M. Marina, Y. B. Che Man, S. A. H. Nazimah, and I. Amin, Chemical properties of virgin coconut oil, Journal of American Oil Chemical Society, vol. 86, pp.301-307, (2009).

DOI: 10.1007/s11746-009-1351-1

Google Scholar

[4] F. M. Dayrit, J. K. D. Dimzon, M. Valde, F., J. E. R. Santos, M. J. M. Garrovillas, and B. J. Villarino, Quality characteristics of virgin coconut oil: Comparisons with refined coconut oil, Pure Applied Chemistry, vol. 83, pp.1789-1799 (2011).

DOI: 10.1351/pac-con-11-04-01

Google Scholar

[5] Philippine National Standard for Virgin Coconut Oil, PNS/BAFPS, (2004).

Google Scholar

[6] F. M. Dayrit, O. E. M. Buenafe, E. T. Chainani, and I. M. S. D. Vera, Analysis of monoglycerides, diglycerides, sterols, and free fatty acids in coconut (Cocos nucifera L. ) oil by 31P NMR spectroscopy, Journal of Agricultural and Food Chemistry, vol. 56, pp.5765-5769, (2008).

DOI: 10.1021/jf8005432

Google Scholar

[7] A. Rohman and Y. B. C. Man, The use of Fourier transform mid infrared (FT-MIR) spectroscopy for detection and quantification of adulteration in virgin coconut oil, Food Chemistry 2011 vol. 129, pp.583-588, (2011).

DOI: 10.1016/j.foodchem.2011.04.070

Google Scholar

[8] A. M. Marina, Y. B. C. Man, and I. Amin, Use of SAW sensor electronic nose for detecting adulteration of virgin coconut oil with RBD palm kernel olein, " Journal of American Oil Chemists, Society, vol. 87, pp.263-270, (2010).

DOI: 10.1007/s11746-009-1492-2

Google Scholar

[9] E. Comini, Metal oxide nano-crystals for gas sensing, Analytica Chimica Acta, vol. 568 pp.28-40, (2006).

DOI: 10.1016/j.aca.2005.10.069

Google Scholar

[10] H. C. Wang, Y. Li, and M. J. Yang, Sensors for organic vapor detection based on composites of carbon nonotubes functionalized with polymers, Sensors and Actuators B: Chemical, vol. 124, pp.360-367., (2007).

DOI: 10.1016/j.snb.2006.12.047

Google Scholar

[11] A. P. Filippov, P. E. Strizhak, and V. G. Il'in, Quartz crystal microbalance modified with Cu(II) stearate and octadecylamine co-ordination chemical compounds for detection of volatile organic compounds, Sensors and Actuators B: Chemical, vol. 126, pp.375-381., (2007).

DOI: 10.1016/j.snb.2007.03.020

Google Scholar

[12] M. J. Aernecke and D. R. Walt., Optical-fiber arrays for vapor sensing, Sensors and Actuators B: Chemical, vol. 142 pp.464-469, (2009).

DOI: 10.1016/j.snb.2009.06.054

Google Scholar

[13] C. Elosua, C. Bariain, I. R. Matias, F. J. Arregui, E. Vergara, and M. Laguna, Optical fiber sensing devices based on organic vapor indicators towards sensor array implementation, Sensors and Actuators B: Chemical, vol. 137 pp.139-146, (2009).

DOI: 10.1016/j.snb.2008.12.037

Google Scholar

[14] E. Schaller, J. O. Bosset, and F. Escher, 'Electronic Noses' and their Application to Food, Lebensm-Wiss. u. -Technol., vol. 31, pp.305-316, (1998).

DOI: 10.1006/fstl.1998.0376

Google Scholar

[15] R. Stella, J. N. Barisci, G. Serra, G. Wallace, and D. d. Rossi, Characterization of olive oil by an electronic nose based on conducting polymer sensors, Sensors and Actuators B, vol. 63, pp.1-9, (2000).

DOI: 10.1016/s0925-4005(99)00510-9

Google Scholar

[16] H. L. Gan, Y. B. C. Man, C. P. Tan, I. NorAini, and S. A. H. Nazimah, Characterization of vegetable oil by surface acoustic wave sensing electronic nose, Food Chemistry, vol. 89, pp.507-518, (2005).

DOI: 10.1016/j.foodchem.2004.03.005

Google Scholar

[17] Z. Hai and J. Wang, Electronic nose and data analysis for detection of maize oil adulteration in sesame oil, Sensors and Actuators B: Chemical vol. 119, pp.449-455, (2006).

DOI: 10.1016/j.snb.2006.01.001

Google Scholar

[18] Y. B. C. Man, H. L. Gan, I. NorAini, S. A. H. Nazimah, and C. P. Tan, Detection of lard adulteration in RBD palm olein using an electronic nose, Food Chemistry, vol. 90, pp.829-835, (2005).

DOI: 10.1016/j.foodchem.2004.05.062

Google Scholar

[19] Y. G. Martín, M. C. C. Oliveros, J. L. P. Pavón, C. G. Pinto, and B. M. Cordero, Electronic nose based on metal oxide semiconductor sensors and pattern recognition techniques: characterisation of vegetable oils, Analytica Chimica Acta, vol. 449, pp.69-80, (2001).

DOI: 10.1016/s0003-2670(01)01355-1

Google Scholar

[20] Addinsoft, XLSTAT Freeware Statistical Program, 7 ed, (2008).

Google Scholar