Direct Regular Sampled Pulse Width Modulation Technique for a Three-Phase Current Source Inverter

Article Preview

Abstract:

This paper proposes a new regular sampled pulse width modulation (PWM) for three-phase current source inverters. The theoretical basis of the proposed modulation strategy is described, including dwell time calculations and switching sequence selection. This strategy is well suited for digital implementation, and enjoys all the flexibilities and degree of freedoms as in space vector modulation. In addition, it ensures a minimum number of switching transitions per fundamental cycle, unlike other PWM methods. It is therefore promising for high-power medium-voltage applications. The validity of the proposed modulation strategy has been confirmed using simulation and experimentation. To furthermore substantiate the superiority of the proposed modulation strategy against other PWM methods, its performance is compared to sinusoidal PWM, selective harmonic elimination, and space vector modulation.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

226-231

Citation:

Online since:

September 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] J. R. Espinoza, G. Joos, J. I. Guzman, L. A. Moran, and R. P. Burgos, Selective harmonic elimination and current/voltage control in current/voltage-source topologies: a unified approach, Industrial Electronics, IEEE Transactions on, vol. 48, pp.71-81, (2001).

DOI: 10.1109/41.904556

Google Scholar

[2] J. I. Guzman, J. R. Espinoza, L. A. Moran, and G. Joos, Selective Harmonic Elimination in Multimodule Three-Phase Current-Source Converters, Power Electronics, IEEE Transactions on, vol. 25, pp.44-53, (2010).

DOI: 10.1109/tpel.2009.2023658

Google Scholar

[3] H. F. Bilgin and M. Ermis, Design and Implementation of a Current-Source Converter for Use in Industry Applications of D-STATCOM, Power Electronics, IEEE Transactions on, vol. 25, pp.1943-1957, (2010).

DOI: 10.1109/tpel.2010.2043958

Google Scholar

[4] L. Yun Wei, M. Pande, N. R. Zargari, and W. Bin, An Input Power Factor Control Strategy for High-Power Current-Source Induction Motor Drive With Active Front-End, Power Electronics, IEEE Transactions on, vol. 25, pp.352-359, (2010).

DOI: 10.1109/tpel.2009.2028344

Google Scholar

[5] J. R. Espinoza and G. Joos, Current-source converter on-line pattern generator switching frequency minimization, Industrial Electronics, IEEE Transactions on, vol. 44, pp.198-206, (1997).

DOI: 10.1109/41.564158

Google Scholar

[6] Suroso and T. Noguchi, Common-emitter topology of multilevel current-source pulse width modulation inverter with chopper-based dc current sources, Power Electronics, IET, vol. 4, pp.759-766, (2011).

DOI: 10.1049/iet-pel.2010.0008

Google Scholar

[7] S. Suroso and T. Noguchi, Multilevel Current Waveform Generation Using Inductor Cells and H-Bridge Current-Source Inverter, Power Electronics, IEEE Transactions on, vol. 27, pp.1090-1098, (2012).

DOI: 10.1109/tpel.2010.2056933

Google Scholar

[8] D. N. Zmood and D. G. Holmes, A generalised approach to the modulation of current source inverters, in Power Electronics Specialists Conference, 1998. PESC 98 Record. 29th Annual IEEE, 1998, pp.739-745 vol. 1.

DOI: 10.1109/pesc.1998.701981

Google Scholar

[9] L. Yun Wei, W. Bin, D. Xu, and N. R. Zargari, Space Vector Sequence Investigation and Synchronization Methods for Active Front-End Rectifiers in High-Power Current-Source Drives, Industrial Electronics, IEEE Transactions on, vol. 55, pp.1022-1034, (2008).

DOI: 10.1109/tie.2008.917073

Google Scholar

[10] L. Lopes and M. F. Naguib, Space Vector Modulation for Low Switching Frequency Current Source Converters With Reduced Low-Order Noncharacteristic Harmonics, Power Electronics, IEEE Transactions on, vol. 24, pp.903-910, (2009).

DOI: 10.1109/tpel.2008.2011270

Google Scholar

[11] M. F. Naguib and L. Lopes, Minimize Low-Order Harmonics in Low-Switching-Frequency Space-Vector-Modulated Current Source Converters With Minimum Harmonic Tracking Technique, Power Electronics, IEEE Transactions on, vol. 24, pp.881-893, (2009).

DOI: 10.1109/tpel.2008.2009055

Google Scholar

[12] D. Jingya, L. Yongqiang, W. Bin, X. Dewei, and N. R. Zargari, A Multisampling SVM Scheme for Current Source Converters With Superior Harmonic Performance, Power Electronics, IEEE Transactions on, vol. 24, pp.2436-2445, (2009).

DOI: 10.1109/tpel.2009.2030808

Google Scholar

[13] B. Mirafzal, M. Saghaleini, and A. K. Kaviani, An SVPWM-Based Switching Pattern for Stand-Alone and Grid-Connected Three-Phase Single-Stage Boost Inverters, Power Electronics, IEEE Transactions on, vol. 26, pp.1102-1111, (2011).

DOI: 10.1109/tpel.2010.2089806

Google Scholar

[14] S. Azmi, G. Adam, K. Ahmed, S. Finney, and B. Williams, Grid Interfacing of Multi-Megawatt Photovoltaic Inverters, Power Electronics, IEEE Transactions on, vol. PP, pp.1-1, (2012).

DOI: 10.1109/tpel.2012.2219072

Google Scholar

[15] M. A. Boost and P. D. Ziogas, State-of-the-art carrier PWM techniques: a critical evaluation, Industry Applications, IEEE Transactions on, vol. 24, pp.271-280, (1988).

DOI: 10.1109/28.2867

Google Scholar