Air Evacuation from the Pressure Accumulator during Work Cycle of the Pneumatic Pulsator

Article Preview

Abstract:

Practically Applicable Vessel Evacuation is Presented in the Article. the Pressure Accumulatoris a Vessel which is a Part of the Pneumatic Pulsator which is Used for Unclogging Outlets of Silos. Apseudo-Schlieren Visualisation Method of Density Gradient and Values of Mach Number are Shown.There is Also a Time Variation of Outflow Velocity Analysed. Airflow Fluctuates after Time of 50 Ms.The Main Reason could Be the Inertia of the Air Mass and a Large Outlet Diameter Relative to the Mainvessel Dimensions

You might also be interested in these eBooks

Info:

Periodical:

Pages:

327-333

Citation:

Online since:

November 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] K. Urbaniec, J. Wernik, K.J. Wołosz, Optimal design of the head of a pneumatic pulsator. Chem. Eng. Trans., Vol. 18 (2009), pp.237-242, DOI: 10. 3303/CET0918037.

Google Scholar

[2] J. Wernik and K.J. Wołosz, Pneumatic pulsator design as an example of numerical simulations in engineering applications. Open Engineering, Vol. 2 (2012), pp.76-82, DOI: 10. 2478/s13531-011- 0050-5.

DOI: 10.2478/s13531-011-0050-5

Google Scholar

[3] K. Wołosz and J. Wernik, Heat generation calculation on the basis of numerical simulation results of supersonic airflow in a nozzle. Chem. Eng. Trans., Vol. 39 (2014), pp.1363-1368, DOI: 10. 3303/CET1439228.

Google Scholar

[4] J.C. Dutton, R.E. Coverdill, Experiments to Study the Gaseous Discharge and Filling of Vessels. Int. J. Eng. Ed. 2 (1997), 123-134.

Google Scholar

[5] OpenFOAM® - The Open Source CFD Toolbox, www. openfoam. com, accessed: 2013-03-04.

Google Scholar

[6] H. Honma, M. Ishihara, T. Yoshimura, K. Maeno and T. Morioka, Interferometric CT measurement of three-dimensional flow phenomena on shock waves and vortices discharged from open ends. Shock Waves, Vol. 13 (2003).

DOI: 10.1007/s00193-003-0206-1

Google Scholar

[7] M. Le, I. Hassan, N. Esmail, The effects of outlet boundary conditions on simulating supersonic microchannel flows using DSMC. Appl. Therm. Eng. 27 (2007), 21-30. doi: 10. 1016/j. applthermaleng. 2006. 05. 013.

DOI: 10.1016/j.applthermaleng.2006.05.013

Google Scholar

[8] G. Lodato, P. Domingo, L. Vervisch, Three-dimensional boundary conditions for direct and large-eddy simulation of compressible viscous flows. J. Comput. Phys. 227(2008), 5105-5143. doi: 10. 1016/j. jcp. 2008. 01. 038.

DOI: 10.1016/j.jcp.2008.01.038

Google Scholar

[9] S.V. Utyuzhnikov, Robin-type wall functions and their numerical implementation. Appl. Numer. Math. 58 (2008), 1521-1533. doi: 10. 1016/j. apnum. 2007. 09. 003.

DOI: 10.1016/j.apnum.2007.09.003

Google Scholar

[10] P. Moin, K. Mahesh, Direct Numerical Simulation: A Tool in Turbulence Research. Annu. Rev. Fluid Mech. 30 (1998), 539-578. doi: 10. 1146/annurev. fluid. 30. 1. 539.

DOI: 10.1146/annurev.fluid.30.1.539

Google Scholar

[11] R. Moser, J. Kim, N. Mansour, Direct numerical simulation of turbulent channel flow up to Re= 590. Phys. Fluids 11 (1999).

DOI: 10.1063/1.869966

Google Scholar

[12] C. Pozrikidis, Fluid Dynamics: Theory, Computation, and Numerical Simulation. Springer US, Boston, MA, (2009).

Google Scholar

[13] F.R. Menter, Two-equation eddy-viscosity turbulence models for engineering applications. AIAA J. 32 (1994), 1598-1605. doi: 10. 2514/3. 12149.

DOI: 10.2514/3.12149

Google Scholar

[14] T. Petrila, D. Trif, Basics of fluid mechanics and introduction to computational fluid dynamics. Springer US, Boston, MA, (2005).

Google Scholar

[15] J. Tu, G.H. Yeoh, C. Liu, Computational Fluid Dynamics. A practical Approach. Elsevier, Amsterdam, (2008).

Google Scholar