[1]
H. St.C. O'Neill, W.A. Dollase, C.R. Ross II, Temperature dependence of the Cation Distribution in Nickel Aluminate (NiAl2O4) Spinel: a Powder XRD Study, Phys. Chem. Miner., 18 (1991) 302 - 319.
DOI: 10.1007/bf00200188
Google Scholar
[2]
Y.S. Han, J.B. Li, X.S. Ning, B. Chi, Temperature dependence of the cation distribution in nickel aluminate spinel from thermodynamics and X-rays, J. Am. Cer. Society, 88: 22 (2005) 3455 - 3458.
DOI: 10.1111/j.1551-2916.2005.00603.x
Google Scholar
[3]
K. Mocala, A. Navrotsky, Structural and thermodynamic variation in nickel aluminate spinel, J. Am. Cer. Society, 72: 5 (1989) 826 - 832.
DOI: 10.1111/j.1151-2916.1989.tb06225.x
Google Scholar
[4]
J.N. Roelofsen, R.C. Peterson, M. Raudsepp, Structural variation in nickel aluminate spinel (NiAl2O4), Am. Mineral., 77: 5–6 (1992) 522 - 528.
Google Scholar
[5]
M. Rotan, J. Tolchard, E. Rytter, M.A. Einarsrud, T. Grande, On the solid solution of the spinel phase in the system NiO–Al2O3, J. Solid State Chem. , 182: 12 (2009) 3412 - 3415.
DOI: 10.1016/j.jssc.2009.10.001
Google Scholar
[6]
W.H. Tuan, M.C. Lin, W.H. Tzing, The coarsening behavior of duplex Al2O3/NiAl2O4 composites, Mater. Chem. Phys., 48 (1997) 156 - 159.
DOI: 10.1016/s0254-0584(97)80111-3
Google Scholar
[7]
D. Mohapatra, D. Sarkar, Effect of in situ spinel seeding on synthesis of MgO - rich MgAl2O4 composite, J. Mater. Sci., 42 (2007) 7286 - 7293.
DOI: 10.1007/s10853-007-1546-5
Google Scholar
[8]
B. Liu, L. Zhang, K. Zhou, Z. Li, H. Wang, Electrical conductivity and molten salt corrosion behavior of spinel nickel ferrite, Solid State Sci., 13: 8 (2011) 1483 - 1487.
DOI: 10.1016/j.solidstatesciences.2011.05.004
Google Scholar
[9]
G. Li, F. Tavangarian, Sintering behavior, microstructure and mechanical properties of vacuum sintered SiC/spinel nanocomposite, J. Alloys Compd., 615: 5 (2014) 204 - 210.
DOI: 10.1016/j.jallcom.2014.06.173
Google Scholar
[10]
G. Costa, V.P. Della, M.J. Ribeiro, A.P.N. Oliveira, G. Monrós, J.A. Labrincha, Synthesis of black ceramic pigments from secondary raw materials, Dyes Pigments, 77: 1 (2008) 137 - 144.
DOI: 10.1016/j.dyepig.2007.04.006
Google Scholar
[11]
C. Ragupathi, J.J. Vijaya, L.J. Kennedy, Synthesis, characterization of nickel aluminate nanoparticles by microwave combustion method and their catalytic properties, Mat. Sci. Eng.: B, 184 (2014) 18 - 25.
DOI: 10.1016/j.mseb.2014.01.010
Google Scholar
[12]
M. Rotan, E. Rytter, M.A. Einarsrud, T. Grande, Solid state mechanism leading to enhanced attrition resistance of alumina based catalyst supports for Fischer–Tropsch synthesis, Int. J. Photoenergy, 33: 1 (2013) 1 - 6.
DOI: 10.1016/j.jeurceramsoc.2012.08.010
Google Scholar
[13]
Y.S. Han, I.B. Li, X.S. Ning, Effect of preparation temperature on the lattice parameter of nickel aluminate spinel, J. Am. Cer. Society, 97: 7 (2004) 1347 - 1349.
DOI: 10.1111/j.1151-2916.2004.tb07733.x
Google Scholar
[14]
F.S. Pettit, E.H. Randkler, E.J. Felten, Formation of NiAl2O4 by Solid State Reaction, J. Am. Cer. Society, 49: 4 (1966) 199 - 203.
DOI: 10.1111/j.1151-2916.1966.tb13233.x
Google Scholar
[15]
M.K. Nazemi, S. Sheibani, F. Rashchi, V.M. Gonzales-Dela Cruz, A. Caballero, Preparation of Nano-structured nickel aluminate spinel powder from spent NiO/Al2O3 catalyst by mechano-chemical synthesis, Adv. Powder Technol., 23 (2013) 833 - 838.
DOI: 10.1016/j.apt.2011.11.004
Google Scholar