Elimination of the Collision States of the Effectors of Industrial Robots by Application of Neural Networks

Article Preview

Abstract:

The article deals with the usage of methods of learning algorithms of neural networks for solving of collision states problem within multi-robotic cooperation. Nowadays, multi-robotic cooperation is a highly used method of work of two or more industrial robots. The requirements for elimination of collision states are getting more difficult when the multi-robotic system is more complicated. Methods of neural networks provide suitable tools for solving of complex cooperating problems. In the beginning of the article, we discuss the term “collision state” and the possibilities of its solving. In the following chapter, we discuss the theory of neural networks and learning algorithms, which we applied in solving of the collision states. In the final chapter, we implemented the practical verification of the model neural network in JSNN programme. It consisted of creating and learning of the training data and subsequent verification of the test data.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

276-281

Citation:

Online since:

October 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] L. Baločková: Metódy koordinácie manipulačných operácii v multirobotických systémoch, Dissertation thesis, Technical University of Kosice, Kosice (2014).

Google Scholar

[2] E. Prada: Periodic and nonperiodic possibility of locomotion of redundant robotic system, Dissertation thesis, Technical University of Kosice, Kosice (2014).

Google Scholar

[3] V. Marík a kol.: Umelá inteligence 2, Centa spol. s r. o., Brno, (1997).

Google Scholar

[4] L. Baločková: The method for solving kinematics of an industrial robot, Applied Mechanics and Materials. Vol. 282, pp.274-28, (Trans Tech Publications, Switzerland 2014).

DOI: 10.4028/www.scientific.net/amm.282.274

Google Scholar

[5] J. N. Pires: Industrial Robots Programming: Building Applications for the Factories of the Future, Springer, 2007, p.282.

Google Scholar

[6] E. Prada, A. Gmiterko, L. Baločková: Notional proposal of a mechatronic system of an artificial (robotic) snake and its electromagnetic actuator, International Journal of Science Commerce and Humanities. Vol. 1, no. 8 (2013), pp.77-85.

Google Scholar

[7] E. Prada, L. Baločková: Použitie neurónových sieti pri priamočiarej lokomócií robotického hada, Automatizácia / Robotika v teórii a praxi: 11. celoštátna konferencia s medzinárodnou účasťou (ROBTEP 2011), Košice, pp.155-160.

Google Scholar

[8] A. Palko, J. Smrček, J. Skařupa, P. Tuleja: Robotika : technické prostriedky pre automatizáciu výrobných procesov: navrhovanie, konštrukcia, príklady riešenia, Applied Mechanics and Materials. Vol. 282 , pp.274-28.

Google Scholar

[9] P.K. Sycara: Multiagent systems, AI magazine Volume 19, No. 2 Intelligent Agents, Summer 1998, pp.79-92 ., [online] http: /www. cs. cmu. edu/~softagents/papers/multiagentsystems. PDF.

Google Scholar

[10] I. Virgala, M. Dovica, M. Kelemen, E. Prada, Z. Bobovský: Snake Robot Movement in the Pipe Using Concertina Locomotion, Applied Mechanics and Materials, Vol 611, p.121, (Trans Tech Publications, Switzerland 2014).

DOI: 10.4028/www.scientific.net/amm.611.121

Google Scholar