[1]
Z. Q. He, Y. C. Song, H. L. Yu, Vibration Analysis of Nonlinear Isolator's Characteristics by ADAMS, Applied Mechanics and Materials, Vols. 152-154, pp.1077-1081, Jan. (2012).
DOI: 10.4028/www.scientific.net/amm.152-154.1077
Google Scholar
[2]
Yang C., Yuan X., Wu J., Yang B., The research of passive vibration isolation system with broad frequency field, Journal of Vibration and Control 19(9), 1348-1356, (2012).
DOI: 10.1177/1077546312444658
Google Scholar
[3]
A Leopa, S Nastac, C Debeleac, Numerical and experimental testing of normality in the functioning of the bearings system, Shock and Vibration, 19(5), pp.915-928, (2012).
DOI: 10.1155/2012/702684
Google Scholar
[4]
C Debeleac, Silviu Nastac, On Vibration Exposure Monitoring at Industrial Intensive Pollutant Areas, Journal of Science and Arts, Year 10, No. 2 (13), pp.319-326, (2010).
Google Scholar
[5]
R.P. Easona, C. Sunb, A.J. Dicka, S. Nagarajaiah, Steady-state response attenuation of a linear oscillator–nonlinear absorber system by using an adjustable-length pendulum in series: Numerical and experimental results, Journal of Sound and Vibration 344 (2015).
DOI: 10.1016/j.jsv.2015.01.030
Google Scholar
[6]
F.D. Scheaua, Functional aspects for antiseismic double sliding isolation systems, The Annals of Dunărea de Jos, University of Galaţi, Volume 2, Issue XXIV, Fascicle XIV, Mechanical Engineering, ISSN 1224-5615, (2014).
DOI: 10.35219/im.2018.1.06
Google Scholar
[7]
Chao Xua, J. Geoffrey Chaseb, Geoffrey W. Rodgers, Physical parameter identification of nonlinear base-isolated buildings using seismic response data, Computers & Structures, Volume 145, p.47–57, (2014).
DOI: 10.1016/j.compstruc.2014.08.006
Google Scholar
[8]
F. S. Oliveira, A. L. Z. Gomez, S. M. Avila, J. L. V. Brito, Design Criteria for a Pendulum Absorber to Control High Building Vibrations, International Journal of Innovations in Materials Science and Engineering (IMSE), vol. 1, no. 2.
Google Scholar