[1]
S. Rahmani, M. Rezaei, and F. Meshkani, Preparation of highly active nickel catalysts supported on mesoporous nanocrystalline γ-Al2O3 for CO2 methanation, J. Ind. Eng. Chem. 20 (2014) 1346–1352.
DOI: 10.1016/j.jiec.2013.07.017
Google Scholar
[2]
S. Abelló, C. Berrueco, and D. Montané, High-loaded nickel–alumina catalyst for direct CO2 hydrogenation into synthetic natural gas (SNG), Fuel. 113 (2013) 598–609.
DOI: 10.1016/j.fuel.2013.06.012
Google Scholar
[3]
M. -S. Fan, A. Z. Abdullah, and S. Bhatia, Hydrogen production from carbon dioxide reforming of methane over Ni–Co/MgO–ZrO2 catalyst: Process optimization, Int. J. Hydrogen Energy. 36 (2011) 4875–4886.
DOI: 10.1016/j.ijhydene.2011.01.064
Google Scholar
[4]
J. Zhang, H. Wang, and A. Dalai, Development of stable bimetallic catalysts for carbon dioxide reforming of methane, J. Catal. 249 (2007) 300–310.
DOI: 10.1016/j.jcat.2007.05.004
Google Scholar
[5]
J. Huo, J. Jing, and W. Li, Reduction time effect on structure and performance of Ni–Co/MgO catalyst for carbon dioxide reforming of methane, Int. J. Hydrogen Energy. 39 (2014) 21015–21023.
DOI: 10.1016/j.ijhydene.2014.10.086
Google Scholar
[6]
Y. T. Law, W. H. Doh, W. Luo, and S. Zafeiratos, A comparative study of ethanol reactivity over Ni, Co and NiCo-ZnO model catalysts, J. Mol. Catal. A Chem. 381 (2014) 89–98.
DOI: 10.1016/j.molcata.2013.09.039
Google Scholar
[7]
F. F. de Sousa, H. S. A. de Sousa, A. C. Oliveira, M. C. C. Junior, A. P. Ayala, E. B. Barros, B. C. Viana, J. M. Filho, and A. C. Oliveira, Nanostructured Ni-containing spinel oxides for the dry reforming of methane: Effect of the presence of cobalt and nickel on the deactivation behaviour of catalysts, Int. J. Hydrogen Energy. 37 (2012).
DOI: 10.1016/j.ijhydene.2011.11.072
Google Scholar
[8]
A. Zare, A. Zare, M. Shiva, and A. A. Mirzaei, Effect of calcination and reaction conditions on the catalytic performance of Co–Ni/Al2O3 catalyst for CO hydrogenation, J. Ind. Eng. Chem. 19 (2013) 1858–1868.
DOI: 10.1016/j.jiec.2013.02.032
Google Scholar
[9]
M. A. A. Aziz, A. A. Jalil, S. Triwahyono, R. R. Mukti, Y. H. Taufiq-Yap, and M. R. Sazegar, Highly active Ni-promoted mesostructured silica nanoparticles for CO2 methanation, Appl. Catal. B Environ. 147 (2014) 359–368.
DOI: 10.1016/j.apcatb.2013.09.015
Google Scholar
[10]
G. Zhou, T. Wu, H. Xie, and X. Zheng, Effects of structure on the carbon dioxide methanation performance of Co-based catalysts, Int. J. Hydrogen Energy. 38 (2013) 10012–10018.
DOI: 10.1016/j.ijhydene.2013.05.130
Google Scholar
[11]
Q. Liu, F. Gu, X. Lu, Y. Liu, H. Li, Z. Zhong, G. Xu, and F. Su, Enhanced catalytic performances of Ni/Al2O3 catalyst via addition of V2O3 for CO methanation, Appl. Catal. A Gen. 488 (2014) 37–47.
DOI: 10.1016/j.apcata.2014.09.028
Google Scholar
[12]
S. Tada, T. Shimizu, H. Kameyama, T. Haneda, and R. Kikuchi, Ni/CeO2 catalysts with high CO2 methanation activity and high CH4 selectivity at low temperatures, Int. J. Hydrogen Energy. 37 (2012) 5527–5531.
DOI: 10.1016/j.ijhydene.2011.12.122
Google Scholar
[13]
A. Karelovic and P. Ruiz, Mechanistic study of low temperature CO2 methanation over Rh/TiO2 catalysts, J. Catal. 301 (2013) 141–153.
DOI: 10.1016/j.jcat.2013.02.009
Google Scholar
[14]
D. C. D. da Silva, S. Letichevsky, L. E. P. Borges, and L. G. Appel, The Ni/ZrO2 catalyst and the methanation of CO and CO2, Int. J. Hydrogen Energy. 37 (2012) 8923–8928.
DOI: 10.1016/j.ijhydene.2012.03.020
Google Scholar
[15]
C. Swalus, M. Jacquemin, C. Poleunis, P. Bertrand, and P. Ruiz, CO2 methanation on Rh/γ-Al2O3 catalyst at low temperature: In situ, supply of hydrogen by Ni/activated carbon catalyst, Appl. Catal. B Environ. 125 (2012) 41–50.
DOI: 10.1016/j.apcatb.2012.05.019
Google Scholar
[16]
G. Zhi, X. Guo, Y. Wang, G. Jin, and X. Guo, Effect of La2O3 modification on the catalytic performance of Ni/SiC for methanation of carbon dioxide, Catal. Commun. 16 (2011) 56–59.
DOI: 10.1016/j.catcom.2011.08.037
Google Scholar
[17]
J. Xu, W. Zhou, Z. Li, J. Wang, and J. Ma, Biogas reforming for hydrogen production over nickel and cobalt bimetallic catalysts, Int. J. Hydrogen Energy. 34 (2009) 6646–6654.
DOI: 10.1016/j.ijhydene.2009.06.038
Google Scholar