Effect of Ni/Co Ratio on Bimetallic Oxide Supported Silica Catalyst in CO2 Methanation

Article Preview

Abstract:

Five series of silica supported bimetallic oxide (NiCo/SiO2) catalysts have been synthesized through successive reverse co-precipitation and wet impregnation methods at different metal loadings (i.e. 80Ni20Co/SiO2,, 60Ni40Co/SiO2, 50Ni50Co/SiO2, 40Ni60Co/SiO2, 20Ni80Co/SiO2). The catalytic performance of these catalysts were tested for the CO2 methanation catalysis using microactivity fixed bed reactor. Nickel rich catalyst (80Ni20Co/SiO2) exhibited the highest catalytic activity in the CO2 methanation with 47.1% of CO2 conversion. Meanwhile, the CH4 selectivity and yield was found to be at 99.9% and 27%, respectively.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

431-436

Citation:

Online since:

October 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] S. Rahmani, M. Rezaei, and F. Meshkani, Preparation of highly active nickel catalysts supported on mesoporous nanocrystalline γ-Al2O3 for CO2 methanation, J. Ind. Eng. Chem. 20 (2014) 1346–1352.

DOI: 10.1016/j.jiec.2013.07.017

Google Scholar

[2] S. Abelló, C. Berrueco, and D. Montané, High-loaded nickel–alumina catalyst for direct CO2 hydrogenation into synthetic natural gas (SNG), Fuel. 113 (2013) 598–609.

DOI: 10.1016/j.fuel.2013.06.012

Google Scholar

[3] M. -S. Fan, A. Z. Abdullah, and S. Bhatia, Hydrogen production from carbon dioxide reforming of methane over Ni–Co/MgO–ZrO2 catalyst: Process optimization, Int. J. Hydrogen Energy. 36 (2011) 4875–4886.

DOI: 10.1016/j.ijhydene.2011.01.064

Google Scholar

[4] J. Zhang, H. Wang, and A. Dalai, Development of stable bimetallic catalysts for carbon dioxide reforming of methane, J. Catal. 249 (2007) 300–310.

DOI: 10.1016/j.jcat.2007.05.004

Google Scholar

[5] J. Huo, J. Jing, and W. Li, Reduction time effect on structure and performance of Ni–Co/MgO catalyst for carbon dioxide reforming of methane, Int. J. Hydrogen Energy. 39 (2014) 21015–21023.

DOI: 10.1016/j.ijhydene.2014.10.086

Google Scholar

[6] Y. T. Law, W. H. Doh, W. Luo, and S. Zafeiratos, A comparative study of ethanol reactivity over Ni, Co and NiCo-ZnO model catalysts, J. Mol. Catal. A Chem. 381 (2014) 89–98.

DOI: 10.1016/j.molcata.2013.09.039

Google Scholar

[7] F. F. de Sousa, H. S. A. de Sousa, A. C. Oliveira, M. C. C. Junior, A. P. Ayala, E. B. Barros, B. C. Viana, J. M. Filho, and A. C. Oliveira, Nanostructured Ni-containing spinel oxides for the dry reforming of methane: Effect of the presence of cobalt and nickel on the deactivation behaviour of catalysts, Int. J. Hydrogen Energy. 37 (2012).

DOI: 10.1016/j.ijhydene.2011.11.072

Google Scholar

[8] A. Zare, A. Zare, M. Shiva, and A. A. Mirzaei, Effect of calcination and reaction conditions on the catalytic performance of Co–Ni/Al2O3 catalyst for CO hydrogenation, J. Ind. Eng. Chem. 19 (2013) 1858–1868.

DOI: 10.1016/j.jiec.2013.02.032

Google Scholar

[9] M. A. A. Aziz, A. A. Jalil, S. Triwahyono, R. R. Mukti, Y. H. Taufiq-Yap, and M. R. Sazegar, Highly active Ni-promoted mesostructured silica nanoparticles for CO2 methanation, Appl. Catal. B Environ. 147 (2014) 359–368.

DOI: 10.1016/j.apcatb.2013.09.015

Google Scholar

[10] G. Zhou, T. Wu, H. Xie, and X. Zheng, Effects of structure on the carbon dioxide methanation performance of Co-based catalysts, Int. J. Hydrogen Energy. 38 (2013) 10012–10018.

DOI: 10.1016/j.ijhydene.2013.05.130

Google Scholar

[11] Q. Liu, F. Gu, X. Lu, Y. Liu, H. Li, Z. Zhong, G. Xu, and F. Su, Enhanced catalytic performances of Ni/Al2O3 catalyst via addition of V2O3 for CO methanation, Appl. Catal. A Gen. 488 (2014) 37–47.

DOI: 10.1016/j.apcata.2014.09.028

Google Scholar

[12] S. Tada, T. Shimizu, H. Kameyama, T. Haneda, and R. Kikuchi, Ni/CeO2 catalysts with high CO2 methanation activity and high CH4 selectivity at low temperatures, Int. J. Hydrogen Energy. 37 (2012) 5527–5531.

DOI: 10.1016/j.ijhydene.2011.12.122

Google Scholar

[13] A. Karelovic and P. Ruiz, Mechanistic study of low temperature CO2 methanation over Rh/TiO2 catalysts, J. Catal. 301 (2013) 141–153.

DOI: 10.1016/j.jcat.2013.02.009

Google Scholar

[14] D. C. D. da Silva, S. Letichevsky, L. E. P. Borges, and L. G. Appel, The Ni/ZrO2 catalyst and the methanation of CO and CO2, Int. J. Hydrogen Energy. 37 (2012) 8923–8928.

DOI: 10.1016/j.ijhydene.2012.03.020

Google Scholar

[15] C. Swalus, M. Jacquemin, C. Poleunis, P. Bertrand, and P. Ruiz, CO2 methanation on Rh/γ-Al2O3 catalyst at low temperature: In situ, supply of hydrogen by Ni/activated carbon catalyst, Appl. Catal. B Environ. 125 (2012) 41–50.

DOI: 10.1016/j.apcatb.2012.05.019

Google Scholar

[16] G. Zhi, X. Guo, Y. Wang, G. Jin, and X. Guo, Effect of La2O3 modification on the catalytic performance of Ni/SiC for methanation of carbon dioxide, Catal. Commun. 16 (2011) 56–59.

DOI: 10.1016/j.catcom.2011.08.037

Google Scholar

[17] J. Xu, W. Zhou, Z. Li, J. Wang, and J. Ma, Biogas reforming for hydrogen production over nickel and cobalt bimetallic catalysts, Int. J. Hydrogen Energy. 34 (2009) 6646–6654.

DOI: 10.1016/j.ijhydene.2009.06.038

Google Scholar