Magnetic Field Dependent Dielectric Properties in Ba(Ti0.99-xMn0.01Tax)O3 Ceramics

Article Preview

Abstract:

Hybrid-doped BaTiO3 ferroelectric ceramics Ba (Ti(0.99-x)Mn0.01Tax)O3 systems have been prepared by a conventional mixed-oxide method viavibro-milling technique. The dielectric properties at room temperature were observed under magnetic field applied parallel to electric field. The results indicate significant changes of both properties with the magnetic field. Moreover, explained in terms of the induction of magnetization by means of an electric field and induction of polarization according to domain switching of the dielectric properties under the influence of the applied magnetic field.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

71-74

Citation:

Online since:

October 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] C. Cotae, O. Baltag, R. Olaru, D. Calarasu, D. Costandache, The study of a magnetic fluid-based sensor, J. Magn. Magn. Mater. 201 (1999) 394-397.

DOI: 10.1016/s0304-8853(99)00110-9

Google Scholar

[2] J. Van den. Boomgaard and R. A. J. Born, A sintered magnetoelectric composite material BaTiO3-Ni(Co, Mn)Fe2O4, J. Mater. Sci. 13 (1978) 1538-1548.

DOI: 10.1007/bf00553210

Google Scholar

[3] W.J. Yu, Y.I. Kim, D.H. Ha, J.H. Lee, Y.K. Park, S. Seong, N.H. Hur, A new manganese oxide with the Aurivillius structure: Bi2Sr2Nb2MnO12-, Solid State Comm. 111 (1999) 705-709.

DOI: 10.1016/s0038-1098(99)00258-6

Google Scholar

[4] Y.J. Wu, C. Yu, X.M. Chen, J. Li, Magnetic and magnetodielectric properties of Bi-substituted yttrium iron garnet ceramics, J. Magn. Magn. Mater. 324 (2012) 3334-3337.

DOI: 10.1016/j.jmmm.2012.05.045

Google Scholar

[5] T. Bonaedy, K.M. Song, K.D. Sung, N. Hur, J.H. Jung, Magnetoelectric and magnetodielectric properties of (1− x)Ba0. 6Sr0. 4TiO3–( x)La0. 7Ca0. 3MnO3 composites, Solid State Comm. 148 (2008) 424-427.

DOI: 10.1016/j.ssc.2008.09.025

Google Scholar

[6] I.G. Deac, I. Balasz, Electroresistance, magnetocapacitance and magnetotransport properties of La0. 55Ca0. 45MnO3/BaTiO3 composite, Mater. Chem. Phys. 136 (2012) 850-857.

DOI: 10.1016/j.matchemphys.2012.08.009

Google Scholar

[7] T. Sareein, M. Unruan, A. Ngamjarurojana, S. Ananta and R. Yimnirun, Dielectric relaxation time behavior of B-site hybrid-doped BaTiO3 ceramics, Ferroelectrics 458 (2014) 56-63.

DOI: 10.1080/00150193.2013.849987

Google Scholar

[8] I.P. Raevski, S.A. Prosandeev, A.S. Bogatin, M.A. Malitskaya, L. Jastrabik, High dielectric permittivity in AFe1/2B1/2O3 nonferroelectric perovskite ceramics (A = Ba, Sr, Ca; B = Nb, Ta, Sb), J. Appl. Phys. 93(7) (2003) 4130-4136.

DOI: 10.1063/1.1558205

Google Scholar

[9] R. Maier, J.L. Cohn, J.J. Neumeier, L.A. Bendersky, Ferroelectricity and ferrimagnetism in iron-doped BaTiO3, Appl. Phys. Lett. 78 (2001) 2536-2538.

DOI: 10.1063/1.1367311

Google Scholar

[10] R. D. Shannon, Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides, Acta Cryst. A 32 (1976) 751-767.

DOI: 10.1107/s0567739476001551

Google Scholar

[11] J.B. Goodenough, A. Wold, R.J. Arnott, N. Menyuk, Relationship between crystal symmetry and magnetic properties of ionic compounds containing Mn3+, Phys. Rev. 124 (1961) 373-384.

DOI: 10.1103/physrev.124.373

Google Scholar

[12] T. Sareein, P. Baipaywad, W. Chaiammad, A. Ngamjarurojana, S. Ananta, X. Tan, R. Yimnirun, Dielectric aging behavior in A-site hybrid-doped BaTiO3 ceramics, Curr. Appl. Phys. 11(2011) S90-S94.

DOI: 10.1016/j.cap.2011.03.018

Google Scholar