[1]
M. Kutz, Environmentally Conscious Manufacturing, Wiley, Hoboken, New Jersey, (2007).
Google Scholar
[2]
F. Klocke, Manufacturing Processes 1: Turning, Milling, Drilling, Springer, New York, (2011).
Google Scholar
[3]
U.S. Dixit, D.K. Sarma, J.P. Davim, Environmentally Friendly Machining, Springer, New York, (2012).
Google Scholar
[4]
A. Shokrani, V. Dhokia, S.T. Newman, Environmentally conscious machining of difficult-to-machine materials with regard to cutting fluids, Int. J. Mach. Tool. Manu. 57 (2012) 83-101.
DOI: 10.1016/j.ijmachtools.2012.02.002
Google Scholar
[5]
D.P. Adler, W.W.S. Hii, D.J. Michalek, J.W. Sutherland, Examining the role of cutting fluids in machining and efforts to address associated environmental/health concerns, Mach. Sci. Technol. 10 (2006) 23-58.
DOI: 10.1080/10910340500534282
Google Scholar
[6]
S.A. Lawal, I.A. Choudhury, Y. Nukman, A critical assessment of lubrication techniques in machining processes: a case for minimum quantity lubrication using vegetable oil-based lubricant, J. Clean. Prod. 41 (2013) 210-221.
DOI: 10.1016/j.jclepro.2012.10.016
Google Scholar
[7]
F. Pusavec, P. Krajnik, J. Kopac, Transitioning to sustainable production – Part I: application on machining technologies, J. Clean. Prod. 18 (2010) 174-184.
DOI: 10.1016/j.jclepro.2009.08.010
Google Scholar
[8]
F. Pusavec, D. Kramar, P. Krajnik, J. Kopac, Transitioning to sustainable production – part II: evaluation of sustainable machining technologies, J. Clean. Prod. 18 (2010) 1211-1221.
DOI: 10.1016/j.jclepro.2010.01.015
Google Scholar
[9]
M. Helu, B. Behmann, H. Meier, D. Dornfeld, G. Lanza, V. Schulze, Impact of green machining strategies on achieved surface quality, CIRP Ann-Manuf. Techn. 61 (2012) 55-58.
DOI: 10.1016/j.cirp.2012.03.092
Google Scholar
[10]
I.H. Mulyadi, P.T. Mativenga, Random or intuitive nozzle position in high-speed milling using minimum quantity lubricant, P. I. Mech. Eng. B-J. Eng. 228 (2013) 21-30.
DOI: 10.1177/0954405413495536
Google Scholar
[11]
A. Attanasio, M. Gelfi, C. Giardini, C. Remino, Minimal quantity lubrication in turning: Effect on tool wear, Wear. 260 (2006) 333-338.
DOI: 10.1016/j.wear.2005.04.024
Google Scholar
[12]
S. Bhowmick, M.J. Lukitsch, A.T. Alpas, Dry and minimum quantity lubrication drilling of cast magnesium alloy (AM60), Int. J. Mach. Tool. Manu. 50 (2010) 444-457.
DOI: 10.1016/j.ijmachtools.2010.02.001
Google Scholar
[13]
D.F. Frăţilă, C. Caizar, Assessment of cooling effect and surface quality to face milling of AlMg3 using several cooling lubrication methods, Mater. Manuf. Process. 27 (2011) 291-296.
DOI: 10.1080/10426914.2011.577864
Google Scholar
[14]
J.P. Davim, P.S. Sreejith, R. Gomes, C. Peixoto, Experimental studies on drilling of aluminium (AA1050) under dry, minimum quantity of lubricant, and flood-lubricated conditions, P. I. Mech. Eng. B-J. Eng. 220 (2006) 1605-1611.
DOI: 10.1243/09544054jem557
Google Scholar
[15]
V.N. Gaitonde, S.R. Karnik, J.P. Davim, Optimal MQL and cutting conditions determination for desired surface roughness in turning of brass using genetic algorithms, Mach. Sci. Technol. 16 (2012) 304-320.
DOI: 10.1080/10910344.2012.673976
Google Scholar
[16]
D. Umbrello, Z. Pu, S. Caruso, J.C. Outeiro, A.D. Jayal, O.W. Dillon, I.S. Jawahir, The effects of cryogenic cooling on surface integrity in hard machining, Procedia. Eng. 19 (2011) 371-376.
DOI: 10.1016/j.proeng.2011.11.127
Google Scholar
[17]
D. Umbrello, F. Micari, I.S. Jawahir, The effects of cryogenic cooling on surface integrity in hard machining: a comparison with dry machining, CIRP Ann-Manuf. Techn. 61 (2012) 103-106.
DOI: 10.1016/j.cirp.2012.03.052
Google Scholar
[18]
Y. Kaynak, T. Lu, I.S. Jawahir, Cryogenic machining-induced surface integrity: a review and comparison with dry, MQL, and flood-cooled machining, Mach. Sci. Technol. 18 (2014) 149-198.
DOI: 10.1080/10910344.2014.897836
Google Scholar
[19]
D. Carou, E.M. Rubio, C.H. Lauro, J.P. Davim, Experimental investigation on surface finish during intermittent turning of UNS M11917 magnesium alloy under dry and near dry machining conditions, Measurement 56 (2014) 136-154.
DOI: 10.1016/j.measurement.2014.06.020
Google Scholar