[1]
S. Katayama et al., Surface hardening of titanium by laser nitriding, in Laser Processing of Materials ICALEO'83, Conf. Proc., Los Angles, USA, 1983, pp.127-134.
Google Scholar
[2]
A. Lisiecki, Titanium Matrix Composite Ti/TiN Produced by Diode Laser Gas Nitriding. Metals. 5, 1 (2015) 54-69.
DOI: 10.3390/met5010054
Google Scholar
[3]
A.G. Gnedovets et al., Kinetic model of mass transfer through gas–liquid interface in laser surface alloying, Appl. Surf. Sci. 109/110 (1997) 143-149.
DOI: 10.1016/s0169-4332(96)00746-5
Google Scholar
[4]
Y.L. Yang et al., Improving the surface property of TC4 alloy by laser nitriding and its mechanism, Acta Metall. Sin. 19, 2 (2006) 151-156.
DOI: 10.1016/s1006-7191(06)60037-9
Google Scholar
[5]
M. Labudovic et al., Mechanism of Surface Modification of the Ti-6Al-4V Alloy Using a Gas Tungsten Arc Heat Source, Metall. Mat. Trans A. 30, 6 (1999) 1597-1603.
DOI: 10.1007/s11661-999-0096-7
Google Scholar
[6]
A. Lisiecki, Mechanism of Laser Surface Modification of the Ti-6Al-4V Alloy in nitrogen atmosphere using a High Power Diode Laser, Advanced Materials Research. 1036 (2014) 411-416.
DOI: 10.4028/www.scientific.net/amr.1036.411
Google Scholar
[7]
A.I.P. Nwobu et al., Nitride formation in titanium based substrates during laser surface melting in nitrogen-argon atmospheres, Acta mater. 47, 2 (1999) 631-643.
DOI: 10.1016/s1359-6454(98)00369-3
Google Scholar
[8]
A. Kurc-Lisiecka et al., Analysis of Deformation Texture in AISI 304 Steel Sheets, Sol. St. Phenomena 203-204 (2013) 105-110.
DOI: 10.4028/www.scientific.net/ssp.203-204.105
Google Scholar
[9]
J. Górka, Analysis of simulated welding thermal cycles S700MC using a thermal imaging camera, Adv. Mat. Res. 837 (2014) 375-380.
DOI: 10.4028/www.scientific.net/amr.837.375
Google Scholar
[10]
M. Burda, A. Gruszczyk, T. Kik, K. Kozioł, A. lÍkawa-Raus, Novel alloys for soldering carbon nanotubes fibers and other carbon based structures, 4th ICEM conference, Porto, 2012, pp.411-412.
Google Scholar
[11]
D. Janicki, High Power Diode Laser Cladding of Wear Resistant Metal Matrix Composite Coatings, Sol. St. Phenomena. 199 (2013) 587-592.
DOI: 10.4028/www.scientific.net/ssp.199.587
Google Scholar
[12]
M. Adamiak, J. Górka, T. Kik, Structure analysis of welded joints of wear resistant plate and constructional steel, Arch. of Mat. Sci. and Eng. 56, 2 (2010) 108-114.
Google Scholar
[13]
A. Poteralski et al., Optimization of composite structures using bio-inspired methods, Springer-Verlag Berlin Heidelberg, ICAISC, 2014, pp.397-406.
Google Scholar
[14]
A. Poteralski, M. Szczepanik et al., Comparison between PSO and AIS on the basis of identification of material constants in piezoelectrics, Springer-Verlag Berlin Heidelberg, ICAISC, 2013, p.569–581.
DOI: 10.1007/978-3-642-38610-7_52
Google Scholar
[15]
D. Janicki, Disk laser welding of armor steel, Archives of Metallurgy and Materials. 59, 4 (2014) 1641-1646.
DOI: 10.2478/amm-2014-0279
Google Scholar
[16]
T. Węgrzyn, J. Piwnik, Low alloy steel welding with micro-jet cooling, Arch. Metall. Mater. 57, 2 (2012) 539–543.
DOI: 10.2478/v10172-012-0056-x
Google Scholar