[1]
D. Devilliers, M.T. Dinh, E. Mahe,D. Krulic, N. Larabi, N. Fatouros, Behaviour of titanium in sulphuric acid, application to DSAs, J. New. Mat. Electrochem. Systems. 9 (2006) 221-232.
Google Scholar
[2]
A. Wennerberg, T. Albrektsson, Effect of titanium surface topography on bone integration: a systematic review, Clin. Oral Impl. Res. 20, 4 (2009) 172-184.
DOI: 10.1111/j.1600-0501.2009.01775.x
Google Scholar
[3]
A.M. Ballo, O. Omar, W. Xia, A. Palmquist, Dental implant surfaces – psysicochemical properties, biological performance and trends, in Implant dentistry – a rapidly evolving practice, InTech (2011) 19-56.
DOI: 10.5772/17512
Google Scholar
[4]
C.N. Elias, Factors affecting the success of dental implants, in Implant dentistry – a rapidly evolving practice, InTech (2011) 319-364.
DOI: 10.5772/18746
Google Scholar
[5]
X. Liu , P.K. Chu, C. Ding, Surface modification of titanium, titanium alloys, and related materials for biomedical applications, Materials Science and Engineering. 47 (2004) 49–121.
DOI: 10.1016/j.mser.2004.11.001
Google Scholar
[6]
A. Bagno, M. Dettin, G. Santoro, Characterization of Ti and Ti6Al4V surfaces after mechanical and chemical treatments: a rational approach to the design of biomedical devices, J. Biotechnol. Biomater. 2, 7 (2012) 151-157.
DOI: 10.4172/2155-952x.1000151
Google Scholar
[7]
H. Garg, G. Bedi, A. Garg, Implant surface modifications: a review, Journal of Clinical and Diagnostic Research. 6, 2 (2012) 319-324.
Google Scholar
[8]
M. Ramazanoglu, Y. Oshida, Osseointegration and bioscience of implant surfaces – current concepts at bone-implant interface, in Implant dentistry – a rapidly evolving practice, InTech (2011) 57-82.
DOI: 10.5772/16936
Google Scholar
[9]
T. Albrektsson, L. Sennerby, A. Wennerberg, State of the art of oral implants, Periodontology. 47 (2008) 15-26.
DOI: 10.1111/j.1600-0757.2007.00247.x
Google Scholar
[10]
T. Albrektsson, A. Wennerberg, The impact of oral implants – past and future, 1966-2042, Journal of Canadian Dental Association. 71, 5 (2005) 327-332.
Google Scholar
[11]
S. Anil, P.S. Anand, H. Alghamdi, J.A. Jansen, Dental implant surface enhancement and osseointegration, in Implant dentistry – a rapidly evolving practice, InTech (2011) 83-108.
DOI: 10.5772/16475
Google Scholar
[12]
A. Wennerberg, T. Albrektsson, Implant surfaces beyond micron roughness. Experimental and clinical knowledge of surface topography and surface chemistry, International dentistry. 8, 6 (2006) 14-18.
Google Scholar
[13]
A. Wennerberg, S. Galli, T. Albrektsson, Current knowledge about the hydrophilic and nanostructured SLAactive surface, Clinical, Cosmetic and Investigational Dentistry. 3 (2011) 59-67.
DOI: 10.2147/ccide.s15949
Google Scholar
[14]
M.B. Rosa, T. Albrektsson, C.E. Francischone, H.O. Schwartz Filho, A. Wennerberg, The influence of surface treatment on the implant roughness pattern, J. Appl. Oral Sci. (2012) 550-554.
DOI: 10.1590/s1678-77572012000500010
Google Scholar
[15]
G. Juodzbalys, M. Sapragoniene, A. Wennerberg, New acid etched titanium dental implant surface, Stomatologija, Baltic Dental and maxillofacial Journal. 5 (2003) 101-105.
Google Scholar
[16]
C.Y. Guo, J.P. Matinlinna, A.T. Hong Tang, Effects of surface charges on dental implants: past, present, and future, International Journal of Biomaterials, ID 381535, (2012).
DOI: 10.1155/2012/381535
Google Scholar
[17]
Feng Zhang, Chun-Fei Zhang, Mei-nv Yin, Ling-Fei Ren, Hai-sheng Lin, Geng-sheng Shi, Effect of heat treatment on H2O2/HCl etched pure titanium dental implant: An in vitro study, Med. Sci. Monit. 18 7 (2012) 265-272.
DOI: 10.12659/msm.883204
Google Scholar
[18]
G. Strnad, N. Chirila, Corrosion rate of sand blasted and acid etched Ti6Al4V for dental implants, Procedia Technology. 19 (2015) 909 – 915.
DOI: 10.1016/j.protcy.2015.02.130
Google Scholar