[1]
V. L. Popov, S. G. Psakhie, E. V. Shilko, A. I. Dmitriev, K. Knothe, F. Bucher, Friction coefficient in rail- wheel-contacts as a function of material and loading parameters. Physical Mesomechanics. 5, 3 (2002) 17-24.
DOI: 10.1016/j.wear.2006.01.046
Google Scholar
[2]
F. Frederich, The track geometry vehicle technical perspective, Glasers Annalen. 108, 12 (1984) 355-362.
Google Scholar
[3]
T. Nakahara, K.S. Baek, H. Chen, M. Ishida, Relationship between surface oxide layer and transient traction characteristics for two steel rollers under unlubricated and water lubricated conditions, Wear. 271 (2011) 25–31.
DOI: 10.1016/j.wear.2010.10.030
Google Scholar
[4]
W.H. Zhang, J.Z. Chen, X.J. Wu, Wheel/rail adhesion and analysis by using full scale roller rig, Wear. 253 (2002) 82–88.
DOI: 10.1016/s0043-1648(02)00086-8
Google Scholar
[5]
B. Koansok, K. Keiji, N. Tsunamitsu, An experimental investigation of transient traction characteristics in rolling–sliding wheel/rail contacts under dry–wet conditions, Wear. 263 (2007) 169–179.
DOI: 10.1016/j.wear.2007.01.067
Google Scholar
[6]
Y.F. Wu, Stability analysis of the vibration of the frame-mounted motor driving system,J. China Railw. Soc. 14 (1992) 1–7.
Google Scholar
[7]
S. Muller, R. Kogel, Numerical simulation of roll-slip oscillations in locomotive drives, Z. Angew. Math. Mech. 81, suppl. (2001) 61–64.
Google Scholar
[8]
C. Collette, M. Horodinca, A. Preumont, Rotational vibration absorber for the mitigation of rail rutting corrugation. Vehicle System Dynamics. 47, 6 (2009) 641-659.
DOI: 10.1080/00423110802339792
Google Scholar
[9]
X. Sun, The locomotive system design of high adhesion performance, J. Southwest Jiaotong Univ. 29 (1994) 235–247.
Google Scholar
[10]
L.M. Song, The Transmission System and Control of EMU, China Railway Press, Beijing, (2007).
Google Scholar
[11]
O. Polach, A fast wheel-rail force calculation computer code, Veh. Syst. Dyn. 33 (Suppl. ) (1999), p.728–739.
DOI: 10.1080/00423114.1999.12063125
Google Scholar
[12]
O. Polach, Influence of locomotive tractive effort on the forces between wheel and rail, Veh. Syst. Dyn. 35 (Suppl. ) (2001) 7–22.
Google Scholar
[13]
J.J. Kalker, Wheel-Rail Rolling Contact Theory. Journal of Wear, 1991, 144, pp.243-261.
DOI: 10.1016/0043-1648(91)90018-p
Google Scholar
[14]
Z.Y. Shen, J.K. Hedrick, J.A. Elkins, Comparison of Alternative Creep-force Models for Rail Vehicle Dynamic Analysis, in the Proceedings of the 8th IAVSD Symposium, Cambridge, MA, Swets and Zeitlinger, Lisse, 1984, p.591–605.
Google Scholar
[15]
J. Pombo, J. Ambrósio, M. Silva, A new wheel–rail contact model for railway dynamics. Vehicle System Dynamics, 45, 2 (2007) 165-189.
DOI: 10.1080/00423110600996017
Google Scholar
[16]
J.B. Ayasse, H. Chollet, Wheel –Rail Contact, in Handbook of Railway Vehicles Dynamics, S. Iwnicki (Ed. ), Taylor & Francis, 2006, pp.85-120.
DOI: 10.1201/9781420004892.ch4
Google Scholar
[17]
K. Knothe, R. Wille, B.W. Zastrau, Advanced Contact Mechanics-Road and Rail. Vehicle System Dynamics. 35, 4 (2001) 361 - 407.
DOI: 10.1076/vesd.35.4.361.2043
Google Scholar
[18]
Y. Yuan, Z. Hong-jun, L. Ye-ming, L. Shi-hui, The dynamic study of locomotives under saturated adhesion. Vehicle System Dynamics. 49, 8 (2011) 1321-1338.
DOI: 10.1080/00423111003668195
Google Scholar
[19]
Zhao, Y., Liang, B. & Iwnicki, S. Estimation of Friction Coefficient Between Wheel and Rail Surface using Traction Motor Behaviour, Journal of Physics: Conference Series 364 (2012) 012004.
DOI: 10.1088/1742-6596/364/1/012004
Google Scholar
[20]
E. Kutluaya, H. Winnerb, Validation of vehicle dynamics simulation models –a review. Vehicle System Dynamics. 52, 2 (2014) 186–200.
DOI: 10.1080/00423114.2013.868500
Google Scholar
[21]
B. Brogliato, A.A. Dam, L. Paoli, F. Génot, M. Abadie, Numerical simulation of finite dimensional multibody nonsmooth mechanical systems, ASME Applied Mechanics Reviews. 55, 2 (2002) 107-150.
DOI: 10.1115/1.1454112
Google Scholar
[22]
J.J. Kalker, Surveyof Wheel-Rail Rolling Contact Theory, State-of-the-Art Paper. IUTAM-IAVSD Symposium, Berlin, Vehicle System Dynamics, 5, 1979, pp.317-358.
DOI: 10.1080/00423117908968610
Google Scholar
[23]
O. Polach, Creep forces in simulations of traction vehicles running on adhesion limit, Wear. 258 (2005) 992–1000.
DOI: 10.1016/j.wear.2004.03.046
Google Scholar
[24]
V. Acary, B. Brogliato, Numerical methods for nonsmooth dynamical systems, Lecture Notes. Applied and Computational Mechanics, Springer, (2008).
DOI: 10.1007/978-3-540-75392-6
Google Scholar
[25]
R. I. Leine, D. H. Van Campen, A. De Kraker, Stick-Slip Vibrations Induced by Alternate Friction Models, Nonlinear Dynamics. 16 (1998) 41–54.
DOI: 10.1023/a:1008289604683
Google Scholar
[26]
R. Oprea, C. Cruceanu, M. Spiroiu, Alternative Friction Models for Train Braking Dynamics. Vehicle System Dynamics. 51, 3 (2013) 460-480.
DOI: 10.1080/00423114.2012.744459
Google Scholar