Design of a Testing Device for Cruciform Specimens Subjected to Planar Biaxial Tension

Article Preview

Abstract:

Multiaxial experiments are necessary to determine materials behavior subjected to complex stress state corresponding to real operating conditions under complex loadings. Stresses applied in biaxial experiments are closely to the stresses that materials experience during their function life. Because of reduced acquisition cost, operation cost and maintenance costs devices attached to the universal testing machine are beginning to be used in ever more applications. The present paper examines a new type of mechanism used to test biaxial cruciform specimens in order to evaluate stress state in planar biaxial tensile testing.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

700-705

Citation:

Online since:

November 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] L. Andrusca, I. Doroftei, P. D. Barsanescu, V. Goanta, Assessment of Systems for Carrying Out of Planar Biaxial Tensile Test, Applied Mechanics and Materials. 658 (2014) 3-8.

DOI: 10.4028/www.scientific.net/amm.658.3

Google Scholar

[2] A. Hannon, P. Tiernan, A review of planar biaxial tensile test systems for sheet metal, Journal of Materials Processing Technology. 198 (2008) 1-13.

DOI: 10.1016/j.jmatprotec.2007.10.015

Google Scholar

[3] A. Zouani, T. Bui-Quoc and M. Bernard, Cyclic Stress-strain Data Analysis Under Biaxial Tensile Stress State, Experimental Mechanics. 39 (1999) 92-102.

DOI: 10.1007/bf02331111

Google Scholar

[4] R. Bardenheier and G. Rogers, Experimental Simulation of Complex Thermo-Mechanical Fatigue, Applied Mechanics and Materials. 326-328 (2006) 1019-1022.

DOI: 10.4028/www.scientific.net/kem.326-328.1019

Google Scholar

[5] C. C. Tasan, J. P. M. Hoefnagels, E. C. A. Dekkers, M. G. D. Geers, Multi-Axial Deformation Setup for Microscopic Testing of Sheet Metal to Fracture, Experimental Mechanics. 52 (2012) 669-678.

DOI: 10.1007/s11340-011-9532-x

Google Scholar

[6] N. Bhatnagar, R. Bhardwaj, P. Selvakumara, M. Brieu, Development of a biaxial tensile test fixture for reinforced thermoplastic composites, Polymer Testing. 26 (2007) 154–161.

DOI: 10.1016/j.polymertesting.2006.09.007

Google Scholar

[7] M. Merklein, M. Biasutti, Development of a biaxial tensile machine for characterization of sheet metals, Journal of Materials Processing Technology. 213 (2013) 939– 946.

DOI: 10.1016/j.jmatprotec.2012.12.005

Google Scholar

[8] S. Calloch, D. Marquis, Triaxial tension compression tests for multiaxial cyclic plasticity, International Journal of Plasticity. 15 (1999) 521-549.

DOI: 10.1016/s0749-6419(99)00005-4

Google Scholar

[9] J.S. Welsh and D.F. Adams, Development of an Electromechanical Triaxial Test Facility for Composite Materials, Experimental Mechanics. 40 (2000) 312-320.

DOI: 10.1007/bf02327505

Google Scholar

[10] M.C. Serna Moreno, J.L. Martínez Vicente, J.J. López Cela, Failure strain and stress fields of a chopped glass-reinforced polyester under biaxial loading, Composite Structures. 103 (2013) 27–33.

DOI: 10.1016/j.compstruct.2013.03.019

Google Scholar

[11] T. Namazu, Y. Nagai, N. Araki, S. Inoue, N. Naka, Design and Development of a Biaxial Tensile Test Device for a Thin Film Specimen, Journal of Engineering Materials and Technology. 134, 1 (2011) 11009-11017.

DOI: 10.1115/1.4005348

Google Scholar

[12] L. Andrusca, V. Goanta, P. D. Barsanescu, Optimizing the Shape and Size of Cruciform Specimens used for Biaxial Tensile Test, Applied Mechanics and Materials. 658 (2014) 167-172.

DOI: 10.4028/www.scientific.net/amm.658.167

Google Scholar