Optimal Arrangement of Stiffeners Using PSO with Cloning Improvement

Article Preview

Abstract:

In the paper an application of the particle swarm optimizer (PSO) with cloning improvement to optimization problems is presented. Reinfored structures considered in this work are dynamically loaded and analyzed by the coupled boundary and finite element method (BEM/FEM). The method is applied to optimize location of stiffeners in plates using criteria depended on displacements or stresses. Numerical examples demonstrate that the combination of the PSO with the BEM/FEM is an effective technique for solving computer aided optimal design problems, both with respect to accuracy and computational resources.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

811-816

Citation:

Online since:

November 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] M.P. Bendsøe, N. Kikuchi, Generating optimal topologies in structural design using a homogenization method. Computer Methods in Applied Mechanics and Engineering. 71 (1988) 197.

DOI: 10.1016/0045-7825(88)90086-2

Google Scholar

[2] K.T. Cheng, N. Olhoff, An investigation concerning optimal design of solid elastic plates, Int. J. Solids Struct. 17 (1981) 305–323.

DOI: 10.1016/0020-7683(81)90065-2

Google Scholar

[3] X. Ding, K. Yamazaki, Stiffener layout design for plate structures by growing and branching tree model (application to vibration-proof design), Struct. Multidisciplinary Optim. 96 (2004) 99.

DOI: 10.1007/s00158-003-0309-4

Google Scholar

[4] D. Bojczuk, W. Szteleblak, Optimization of layout and shape of stiffeners in 2D structures, Computers and Structures. 86 (2008) 1436–1446.

DOI: 10.1016/j.compstruc.2007.05.005

Google Scholar

[5] T. Burczyński, A. Poteralski, M. Szczepanik, Topological evolutionary computing in the optimal design of 2D and 3D structures. Engineering Optimization. 39, 7 (2007) 811-830.

DOI: 10.1080/03052150701515102

Google Scholar

[6] T. Burczyński, W. Kuś, A. Długosz, A. Poteralski, M. Szczepanik, Sequential and Distributed Evolutionary Computations in Structural Optimization ICAISC, Lecture Notes on Artificial Intelligence 3070, Springer, (2004).

DOI: 10.1007/978-3-540-24844-6_167

Google Scholar

[7] T. Burczynski, A. Dlugosz; W. Kus, P. Orantek, A. Poteralski, M. Szczepanik, Intelligent computing in evolutionary optimal shaping of solids, in the procedings of the 3rd International Conference on Computing, Communications and Control Technologies, Vol 3, 2005, pp.294-298.

Google Scholar

[8] A. Poteralski, Optimization of Mechanical Structures Using Artificial Immune Algorithm, Beyond Databases, Architectures, and Structures, Communications in Computer and Information Science. 424 (2014) 280-289.

DOI: 10.1007/978-3-319-06932-6_27

Google Scholar

[9] A. Poteralski, M. Szczepanik, G. Dziatkiewicz, W. Kuś, T. Burczyński, Comparison between PSO and AIS on the basis of identification of material constants in piezoelectrics Springer-Verlag Berlin Heidelberg 2013, ICAISC 2013, Part II, LNAI 7895, 2013, p.569.

DOI: 10.1007/978-3-642-38610-7_52

Google Scholar

[10] M. Szczepanik, A. Poteralski, A. Długosz, W. Kuś, T. Burczyński, Bio-inspired optimization of thermomechanical structures Springer-Verlag Berlin Heidelberg 2013, ICAISC 2013, Part II, LNAI 7895, 2013, pp.79-90.

DOI: 10.1007/978-3-642-38610-7_8

Google Scholar

[11] A. Poteralski, M. Szczepanik, J. Ptaszny, W. Kuś, T. Burczyński, Hybrid artificial immune system in identification of room acoustic properties, Inverse Problems in Science and Engineering. 21, 6 (2013) 957-967.

DOI: 10.1080/17415977.2013.788174

Google Scholar

[12] A. Poteralski, M. Szczepanik, W. Beluch, T. Burczyński, Optimization of composite structures using bio-inspired methods, ICAISC 2014. 8468 (2014) 385-395.

DOI: 10.1007/978-3-319-07176-3_34

Google Scholar

[13] J. Kennedy, R.C. Eberhart, Swarm Intelligence. Morgamn Kauffman, (2001).

Google Scholar

[14] M. Szczepanik, T. Burczyński, Swarm optimization of stiffeners locations in 2-D structures, Bulletin of the Polish Academy of Sciences, Technical Sciences. 60, 2 (2012) 241 – 246.

DOI: 10.2478/v10175-012-0032-7

Google Scholar

[15] M. Szczepanik, A. Poteralski, J. Ptaszny, T. Burczyński, Hybrid particle swarm optimizer and Its application in identification of room acoustic properties, Swarm and Evolutionary Computation, Lecture Notes in Somputer Science, 7269, Springer Verlag Berlin Heidelberg, (2012).

DOI: 10.1007/978-3-642-29353-5_45

Google Scholar

[16] M. Szczepanik, T. Burczynski, Intelligent optimal design of spatial structures, Computers & Structures. 127 (2013) 102–115.

DOI: 10.1016/j.compstruc.2013.04.029

Google Scholar

[17] J. Dominguez, Boundary elements in dynamics, Computational Mechanics Publications, Elsevier Applied Science, Southampton-Boston, London-New York, (1993).

Google Scholar

[18] P. Fedelinski, R. Gorski Analysis and optimization of dynamically loaded reinforced plates by the coupled boundary and finite element method, Computer Modeling in Engineering & Sciences. 15, 1 (2006) 31-40.

Google Scholar

[19] D. Janicki, Fiber laser welding of nickel based superalloy Rene 77, Proceedings of SPIE, Laser Technology 2012: Applications of Lasers. 8703 (2013) 87030Q.

DOI: 10.1117/12.2013428

Google Scholar

[20] D. Janicki, Disk laser welding of armor steel, Archives of Metallurgy and Materials. 59, 4 (2014) 1641-1646.

DOI: 10.2478/amm-2014-0279

Google Scholar

[21] A Klimpel, T Kik, J Górka, Computer aided structure prediction of 0H18N9 and S235JR steels laser welded joints, Journal of Achievements in Materials and Manufacturing Engineering. 21 1 (2007) 83-86.

Google Scholar

[22] M Adamiak, J Górka, T Kik, Structure analysis of welded joints of wear resistant plate and constructional steel, Archives of Materials Science and Engineering. 56, 2 (2010) 108-114.

Google Scholar

[23] A. Lisiecki, Diode laser welding of high yield steel, Proceedings of SPIE, Laser Technology 2012: Application of Lasers, 8703, (2013).

DOI: 10.1117/12.2013429

Google Scholar

[24] R. Burdzik, Ł. Konieczny, Z. Stanik, P. Folega, A. Smalcerz, A. Lisiecki, Analysis of impact of chosen parameters on the wear of camshaft, Arch. Metall. Mater. 59, 3 (2014) 957-963.

DOI: 10.2478/amm-2014-0161

Google Scholar