[1]
M.P. Bendsøe, N. Kikuchi, Generating optimal topologies in structural design using a homogenization method. Computer Methods in Applied Mechanics and Engineering. 71 (1988) 197.
DOI: 10.1016/0045-7825(88)90086-2
Google Scholar
[2]
K.T. Cheng, N. Olhoff, An investigation concerning optimal design of solid elastic plates, Int. J. Solids Struct. 17 (1981) 305–323.
DOI: 10.1016/0020-7683(81)90065-2
Google Scholar
[3]
X. Ding, K. Yamazaki, Stiffener layout design for plate structures by growing and branching tree model (application to vibration-proof design), Struct. Multidisciplinary Optim. 96 (2004) 99.
DOI: 10.1007/s00158-003-0309-4
Google Scholar
[4]
D. Bojczuk, W. Szteleblak, Optimization of layout and shape of stiffeners in 2D structures, Computers and Structures. 86 (2008) 1436–1446.
DOI: 10.1016/j.compstruc.2007.05.005
Google Scholar
[5]
T. Burczyński, A. Poteralski, M. Szczepanik, Topological evolutionary computing in the optimal design of 2D and 3D structures. Engineering Optimization. 39, 7 (2007) 811-830.
DOI: 10.1080/03052150701515102
Google Scholar
[6]
T. Burczyński, W. Kuś, A. Długosz, A. Poteralski, M. Szczepanik, Sequential and Distributed Evolutionary Computations in Structural Optimization ICAISC, Lecture Notes on Artificial Intelligence 3070, Springer, (2004).
DOI: 10.1007/978-3-540-24844-6_167
Google Scholar
[7]
T. Burczynski, A. Dlugosz; W. Kus, P. Orantek, A. Poteralski, M. Szczepanik, Intelligent computing in evolutionary optimal shaping of solids, in the procedings of the 3rd International Conference on Computing, Communications and Control Technologies, Vol 3, 2005, pp.294-298.
Google Scholar
[8]
A. Poteralski, Optimization of Mechanical Structures Using Artificial Immune Algorithm, Beyond Databases, Architectures, and Structures, Communications in Computer and Information Science. 424 (2014) 280-289.
DOI: 10.1007/978-3-319-06932-6_27
Google Scholar
[9]
A. Poteralski, M. Szczepanik, G. Dziatkiewicz, W. Kuś, T. Burczyński, Comparison between PSO and AIS on the basis of identification of material constants in piezoelectrics Springer-Verlag Berlin Heidelberg 2013, ICAISC 2013, Part II, LNAI 7895, 2013, p.569.
DOI: 10.1007/978-3-642-38610-7_52
Google Scholar
[10]
M. Szczepanik, A. Poteralski, A. Długosz, W. Kuś, T. Burczyński, Bio-inspired optimization of thermomechanical structures Springer-Verlag Berlin Heidelberg 2013, ICAISC 2013, Part II, LNAI 7895, 2013, pp.79-90.
DOI: 10.1007/978-3-642-38610-7_8
Google Scholar
[11]
A. Poteralski, M. Szczepanik, J. Ptaszny, W. Kuś, T. Burczyński, Hybrid artificial immune system in identification of room acoustic properties, Inverse Problems in Science and Engineering. 21, 6 (2013) 957-967.
DOI: 10.1080/17415977.2013.788174
Google Scholar
[12]
A. Poteralski, M. Szczepanik, W. Beluch, T. Burczyński, Optimization of composite structures using bio-inspired methods, ICAISC 2014. 8468 (2014) 385-395.
DOI: 10.1007/978-3-319-07176-3_34
Google Scholar
[13]
J. Kennedy, R.C. Eberhart, Swarm Intelligence. Morgamn Kauffman, (2001).
Google Scholar
[14]
M. Szczepanik, T. Burczyński, Swarm optimization of stiffeners locations in 2-D structures, Bulletin of the Polish Academy of Sciences, Technical Sciences. 60, 2 (2012) 241 – 246.
DOI: 10.2478/v10175-012-0032-7
Google Scholar
[15]
M. Szczepanik, A. Poteralski, J. Ptaszny, T. Burczyński, Hybrid particle swarm optimizer and Its application in identification of room acoustic properties, Swarm and Evolutionary Computation, Lecture Notes in Somputer Science, 7269, Springer Verlag Berlin Heidelberg, (2012).
DOI: 10.1007/978-3-642-29353-5_45
Google Scholar
[16]
M. Szczepanik, T. Burczynski, Intelligent optimal design of spatial structures, Computers & Structures. 127 (2013) 102–115.
DOI: 10.1016/j.compstruc.2013.04.029
Google Scholar
[17]
J. Dominguez, Boundary elements in dynamics, Computational Mechanics Publications, Elsevier Applied Science, Southampton-Boston, London-New York, (1993).
Google Scholar
[18]
P. Fedelinski, R. Gorski Analysis and optimization of dynamically loaded reinforced plates by the coupled boundary and finite element method, Computer Modeling in Engineering & Sciences. 15, 1 (2006) 31-40.
Google Scholar
[19]
D. Janicki, Fiber laser welding of nickel based superalloy Rene 77, Proceedings of SPIE, Laser Technology 2012: Applications of Lasers. 8703 (2013) 87030Q.
DOI: 10.1117/12.2013428
Google Scholar
[20]
D. Janicki, Disk laser welding of armor steel, Archives of Metallurgy and Materials. 59, 4 (2014) 1641-1646.
DOI: 10.2478/amm-2014-0279
Google Scholar
[21]
A Klimpel, T Kik, J Górka, Computer aided structure prediction of 0H18N9 and S235JR steels laser welded joints, Journal of Achievements in Materials and Manufacturing Engineering. 21 1 (2007) 83-86.
Google Scholar
[22]
M Adamiak, J Górka, T Kik, Structure analysis of welded joints of wear resistant plate and constructional steel, Archives of Materials Science and Engineering. 56, 2 (2010) 108-114.
Google Scholar
[23]
A. Lisiecki, Diode laser welding of high yield steel, Proceedings of SPIE, Laser Technology 2012: Application of Lasers, 8703, (2013).
DOI: 10.1117/12.2013429
Google Scholar
[24]
R. Burdzik, Ł. Konieczny, Z. Stanik, P. Folega, A. Smalcerz, A. Lisiecki, Analysis of impact of chosen parameters on the wear of camshaft, Arch. Metall. Mater. 59, 3 (2014) 957-963.
DOI: 10.2478/amm-2014-0161
Google Scholar