Stress State Evaluation in Biaxially Loaded Cruciform Specimens

Article Preview

Abstract:

Testing cruciform specimens under static biaxial loading conditions is the method with the best results used to determine the mechanical behavior of materials. A static stress with nonlinear material analysis was applied for only one-eighth of the specimen geometry, due to symmetry conditions, to evaluate stress state from different cruciform specimens subjected to equi-biaxial tension. For the majority of isotropic materials with ductile behavior, such as metals, the most suitable yield criterion used to predict failure is von Mises.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

980-985

Citation:

Online since:

November 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] L. Andrusca, V. Goanta, P. D. Barsanescu, Optimizing the Shape and Size of Cruciform Specimens used for Biaxial Tensile Test, Applied Mechanics and Materials. 658 (2014) 167-172.

DOI: 10.4028/www.scientific.net/amm.658.167

Google Scholar

[2] Escarpita et al., Biaxial tensile strength characterization of textile composite Materials, InstitutoTecnologico y de EstudiosSuperiores de Monterey, Monterey, Mexico, (2012).

Google Scholar

[3] A. Hannon, P. Tiernan, A review of planar biaxial tensile test systems for sheet metal, Journal of Materials Processing Technology. 198 (2008) 1-13.

DOI: 10.1016/j.jmatprotec.2007.10.015

Google Scholar

[4] L. Andrusca, I. Doroftei, P. D. Barsanescu, V. Goanta, Assessment of Systems for Carrying Out of Planar Biaxial Tensile Test, Applied Mechanics and Materials. 658 (2014) 3-8.

DOI: 10.4028/www.scientific.net/amm.658.3

Google Scholar

[5] A. Makris, T. Vandenbergh, C. Ramault, D. van Hemelrijck, E. Lamkanfi, W. van Paepegem, Shape optimisation of a biaxially loaded cruciform specimen, Polymer Testing. 29 (2010) 216-223.

DOI: 10.1016/j.polymertesting.2009.11.004

Google Scholar

[6] J. Chakrabarty, Theory of Plasticity, Published by Elsevier Butterworth-Heinemann, 3rd ed., Oxford, 2006, p.29, 856.

Google Scholar

[7] M.C. Serna Moreno, J.J. LópezCela, Failure strain and stress fields of chopped glass-reinforced polyester under biaxial loading, Composite Structures. 103 (2013) 27–33.

DOI: 10.1016/j.compstruct.2013.03.019

Google Scholar

[8] R.A. Cláudio, M. Freitas, L. Reis, B. Li, I. Guelho, An optimized biaxial cruciform specimen for low capacity testing machines, 10th Int. Conf. on Multiaxial Fatigue and Fracture, Japan, (2013).

Google Scholar

[9] Y. Ohtake, S. Rokugawa, H. Masumoto, Geometry determination of cruciform type specimen and biaxial tensile test of C/C composites, Key Engineering Materials. 3 (1999) 151–154.

DOI: 10.4028/www.scientific.net/kem.164-165.151

Google Scholar

[10] A.M. Abdelhay, O.M. Dawood, A. Bassuni, E.A. Elhalawany, M.A. Mustafa, A newly developed cruciform specimens geometry for biaxial stress evaluation using NDE. 13th Int. Conf., Cairo, Egypt, May 26–28, (2009).

Google Scholar

[11] F. Abu-Farha, L.G. Hector Jr., M. Khraisheh, Cruciform-shaped specimens for elevated temperature biaxial testing of lightweight materials, JOM. 61 (2001) 48-56.

DOI: 10.1007/s11837-009-0121-8

Google Scholar