[1]
Thess, A., Lee, R, Nikolaev, P., Dai, H., Petit, P., Robert, J., Xu, C., Lee, Y.H., Kim, S. G., Rinzler, A.G., Colbert, D.T., Scuseria, G.E., Tománek, D., Fischer, J.E. and Smalley, R.E., Crystalline Ropes of Metallic Carbon Nanotubes, Science, Vol. 273 (1996).
DOI: 10.1126/science.273.5274.483
Google Scholar
[2]
Cassell, A.M., Raymakers, J. A., Kong, J. and Dai, H. J., Large scale CVD synthesis of single-walled carbon nanotubes, Journal of Physical Chemistry B, 103 (1999) 6484-6492.
DOI: 10.1021/jp990957s
Google Scholar
[3]
Kong, J., Soh, H. T., Cassell, A. M., Quate, C. F., and Dai, H., Synthesis of individual single-walled carbon nanotubes on patterned silicon wafers, Nature, 395 (1998) 878-881.
DOI: 10.1038/27632
Google Scholar
[4]
Nikolaev, P., Bronikowski M. J., Bradley R. K., Rohmund F., Colbert D. T., Smith K. A., and R. E. Smalley., Gas-phase catalytic growth of single-walled carbon nanotubes from carbon monoxide, Chemical Physics Letters, Vol. 313(1999) 91-97.
DOI: 10.1016/s0009-2614(99)01029-5
Google Scholar
[5]
Clauss,W., Bergeron, D.J., Freitag, M., Kane, C.L., Mele, E.J., and Johnson A.T., Electron backscattering on single-wall carbon nanotubes observed by scanning tunneling microscopy., Europhysics Letters, Vol. 47 (1999) 601-607.
DOI: 10.1209/epl/i1999-00431-5
Google Scholar
[6]
Kim, P. and Lieber, C. M., Nanotube Nanotweezers, Science, Vol. 286, (1999) 2148-2150.
Google Scholar
[7]
Doorn, S. K., Zheng, L., O'Connell, M. J., Zhu, Y., Huang, S., and Liu, J., Raman spectroscopy and imaging of ultralong carbon nanotubes, Journal of Physical Chemistry B, Vol. 109 (2005) 3751-3758.
DOI: 10.1021/jp0463159
Google Scholar
[8]
Louie, S.G., Carbon Nanotubes, Springer, (2001) 113.
Google Scholar
[9]
Zhu, Z.H., Finnerty, J., Lu, G. Q., Wilson, M.A., and Yang, R.T., Molecular Orbital Theory Calculations of the H20-Carbon Reaction. , Energy & Fuels, 16 (2002) 847-854.
DOI: 10.1021/ef010267z
Google Scholar
[10]
Dunlap, B.I., Relating Carbon Tubules, Physical Review B, Vol. 49, (1994) 5643-5651.
DOI: 10.1103/physrevb.49.5643
Google Scholar
[11]
Mielke, S.L., Troya, D., Zhang, S., Li, J.L., Xiao, S., Car, R., Ruoff, R.S., Schatz ,G.C., and Belytschko, T., The role of vacancy defects and holes in the fracture of carbon nanotubes, Chemical Physics Letters, Vol. 390 (2004) 413–420.
DOI: 10.1016/j.cplett.2004.04.054
Google Scholar
[12]
Prakash R., Fatigue behavior of carbon fibre reinforced plastics, Proceedings of the Sixth Canadian Congress on Applied Mechanics (CANCAM) 77, Vancouver (Canada), 1977, pp.241-242.
Google Scholar
[13]
Prakash R., Fatigue behavior prediction for carbon fibre reinforced plastics, Proceedings of the International Conference on Fracture Mechanics in Engineering Applications, Bangalore, (1979) 319-329.
DOI: 10.1007/978-94-009-9574-1_24
Google Scholar
[14]
Wang, Z. L, Poncharal, P, and Heer, W. A., Nanomeasurements of individual carbon nanotubes by in situ TEM, Pure Applied Chemistry, Vol. 72(1-2), (2000) 209-219.
DOI: 10.1351/pac200072010209
Google Scholar
[15]
Gao, R, Wang, Z.L., Bai, Z., de Heer, W., Dai, L., and Gao, M., Nanomechanics of individual carbon nanotubes from pyrolytically grown arrays, Physical Review Letters Vol. 85(3) (2000) 622–625.
DOI: 10.1103/physrevlett.85.622
Google Scholar
[16]
Ebbesen T. W, and Takada T., Topological and sp3 defect structures in Nanotubes, Carbon, Vol. 33 (1995) 937–978.
DOI: 10.1016/0008-6223(95)00025-9
Google Scholar
[17]
Tserpes K.I., and Papanikos P., The effect of Stone–Wales defect on the tensile behavior and fracture of single-walled carbon nanotubes, Composite Structures, 79 (2007) 581-589.
DOI: 10.1016/j.compstruct.2006.02.020
Google Scholar
[18]
Hirai Y., and Nishimaki S., Molecular Dynamics Studies on Mechanical Properties of Carbon Nano Tubes with Pinhole Defects, Japanese Journal of Applied Physics, 42, (2003) 4120 - 4123.
DOI: 10.1143/jjap.42.4120
Google Scholar
[19]
Belytschko, T, Xiao, S.P., Schatz, G.C., Ruoff R.S., Atomistic simulations of nanotube fracture, Physical Review B, 65, (2002) 235430/1 – 235430/8.
DOI: 10.1103/physrevb.65.235430
Google Scholar
[20]
Chandra, N., Namilae, S., and Shet, C., Local elastic properties of carbon nanotubes in the presence of Stone–Wales defects, Physical Review B, Vol. 69, (2004) 964101/1 - 964101/12.
DOI: 10.1103/physrevb.69.094101
Google Scholar
[21]
Liew, K.M., He, X.Q., and Wong, C.H., On the study of elastic and plastic properties of multi-walled carbon nanotubes under axial tension using molecular dynamics simulations, Acta Materiala, Vol. 52, (2004) 2521–2527.
DOI: 10.1016/j.actamat.2004.01.043
Google Scholar
[22]
Li, C., Chou, T-W., A structural mechanics approach for the analysis of carbon nanotubes. International Journal of Solids and Structures, Vol. 40, (2003) 2487–2499.
DOI: 10.1016/s0020-7683(03)00056-8
Google Scholar
[23]
Tserpes, K.I., and Papanikos, P., Finite element modeling of single-Walled carbon nanotubes, Composites Part B (Engineering), Vol. 36, (2005) 468-477.
DOI: 10.1016/j.compositesb.2004.10.003
Google Scholar
[24]
Anand Y Joshi, S. P. Harsha, Satish C Sharma Dynamic Analysis of a Clamped Wavy Single Walled Carbon Nanotube based Nano Mechanical Sensors, ASME Journal of Nanotechnology in Engineering and Medicine, 1, (3), (2010) 031007-1-7.
DOI: 10.1115/1.4002072
Google Scholar
[25]
Ajay M. Patel, Anand Y. Joshi, Effect of waviness on the dynamic characteristics of Double Walled Carbon Nanotubes, Nanoscience and Nanotechanology Latters, Vol. 6, (2014) 1–9.
DOI: 10.1166/nnl.2014.1720
Google Scholar
[26]
Ajay M. Patel, Anand Y Joshi, Investigating the Influence of Surface Deviations in Double Wall Carbon Nanotube based Nanomechanical Sensors, Computational Materials Science, Volume 89, (2014) 157–164.
DOI: 10.1016/j.commatsci.2014.03.034
Google Scholar
[27]
Anand Y Joshi, S. P. Harsha, Satish C Sharma, Effect of chirality and atomic vacancies on the dynamics of nano resonator based on SWCNT, Sensor Review, 31, (1), 2011, 47-57.
DOI: 10.1108/02602281111099080
Google Scholar
[28]
Anand Y Joshi, S. P. Harsha, Satish C Sharma, The Effect of Pinhole Defect on Vibration Characteristics of Single Walled Carbon Nanotube, Physica E: Low Dimensional systems & Nanostructures, 43, (5), (2011) 1040-1045.
DOI: 10.1016/j.physe.2010.12.011
Google Scholar