A Review on Defects in Carbon Nanotubes

Article Preview

Abstract:

Various defects on the CNT wall have been reported, which are formed during the synthesizing process. CNTs have superior properties compared to the traditional engineering materials. However, these properties hold only for the ideal case of carbon nanotubes, where these are made of perfect hexagonal graphite honeycomb lattice of mono-atomic layer thickness. The advantages or disadvantages of the presence of defects in carbon nanotubes depend on their applications. Structural defects may increase the adhesion of other atoms and molecules to carbon nanotubes. It has also been found that the defects in CNT do cause a change in its resonant frequency as compared to that of a non-defective CNT. The defects that have been considered for the purpose of analysis in this research includes defects in the carbon nanotubes likewise Waviness, Vacancy Defect, Pinhole Defect, Fracture and Stone Wales Defect. It has been observed that with the increase in the number of defects in CNT, a reduction in the fundamental frequency is observed.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

145-150

Citation:

Online since:

November 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Thess, A., Lee, R, Nikolaev, P., Dai, H.,  Petit, P.,  Robert, J.,  Xu, C.,  Lee, Y.H., Kim, S. G., Rinzler, A.G., Colbert, D.T., Scuseria, G.E., Tománek, D., Fischer, J.E. and Smalley, R.E., Crystalline Ropes of Metallic Carbon Nanotubes, Science, Vol. 273 (1996).

DOI: 10.1126/science.273.5274.483

Google Scholar

[2] Cassell, A.M., Raymakers, J. A., Kong, J. and Dai, H. J., Large scale CVD synthesis of single-walled carbon nanotubes, Journal of Physical Chemistry B, 103 (1999) 6484-6492.

DOI: 10.1021/jp990957s

Google Scholar

[3] Kong, J., Soh, H. T., Cassell, A. M., Quate, C. F., and Dai, H., Synthesis of individual single-walled carbon nanotubes on patterned silicon wafers, Nature, 395 (1998) 878-881.

DOI: 10.1038/27632

Google Scholar

[4] Nikolaev, P., Bronikowski M. J., Bradley R. K., Rohmund F., Colbert D. T., Smith K. A., and R. E. Smalley., Gas-phase catalytic growth of single-walled carbon nanotubes from carbon monoxide, Chemical Physics Letters, Vol. 313(1999) 91-97.

DOI: 10.1016/s0009-2614(99)01029-5

Google Scholar

[5] Clauss,W., Bergeron, D.J., Freitag, M., Kane, C.L., Mele, E.J., and Johnson A.T., Electron backscattering on single-wall carbon nanotubes observed by scanning tunneling microscopy., Europhysics Letters, Vol. 47 (1999) 601-607.

DOI: 10.1209/epl/i1999-00431-5

Google Scholar

[6] Kim, P. and Lieber, C. M., Nanotube Nanotweezers, Science, Vol. 286, (1999) 2148-2150.

Google Scholar

[7] Doorn, S. K., Zheng, L.,  O'Connell, M. J.,  Zhu, Y.,  Huang, S., and Liu, J., Raman spectroscopy and imaging of ultralong carbon nanotubes, Journal of Physical Chemistry B, Vol. 109 (2005) 3751-3758.

DOI: 10.1021/jp0463159

Google Scholar

[8] Louie, S.G., Carbon Nanotubes, Springer, (2001) 113.

Google Scholar

[9] Zhu, Z.H., Finnerty, J., Lu, G. Q., Wilson, M.A., and Yang, R.T., Molecular Orbital Theory Calculations of the H20-Carbon Reaction. , Energy & Fuels, 16 (2002) 847-854.

DOI: 10.1021/ef010267z

Google Scholar

[10] Dunlap, B.I., Relating Carbon Tubules, Physical Review B, Vol. 49, (1994) 5643-5651.

DOI: 10.1103/physrevb.49.5643

Google Scholar

[11] Mielke, S.L., Troya, D., Zhang, S., Li, J.L., Xiao, S., Car, R., Ruoff, R.S., Schatz ,G.C., and Belytschko, T., The role of vacancy defects and holes in the fracture of carbon nanotubes, Chemical Physics Letters, Vol. 390 (2004) 413–420.

DOI: 10.1016/j.cplett.2004.04.054

Google Scholar

[12] Prakash R., Fatigue behavior of carbon fibre reinforced plastics, Proceedings of the Sixth Canadian Congress on Applied Mechanics (CANCAM) 77, Vancouver (Canada), 1977, pp.241-242.

Google Scholar

[13] Prakash R., Fatigue behavior prediction for carbon fibre reinforced plastics, Proceedings of the International Conference on Fracture Mechanics in Engineering Applications, Bangalore, (1979) 319-329.

DOI: 10.1007/978-94-009-9574-1_24

Google Scholar

[14] Wang, Z. L, Poncharal, P, and Heer, W. A., Nanomeasurements of individual carbon nanotubes by in situ TEM, Pure Applied Chemistry, Vol. 72(1-2), (2000) 209-219.

DOI: 10.1351/pac200072010209

Google Scholar

[15] Gao, R, Wang, Z.L., Bai, Z., de Heer, W., Dai, L., and Gao, M., Nanomechanics of individual carbon nanotubes from pyrolytically grown arrays, Physical Review Letters Vol. 85(3) (2000) 622–625.

DOI: 10.1103/physrevlett.85.622

Google Scholar

[16] Ebbesen T. W, and Takada T., Topological and sp3 defect structures in Nanotubes, Carbon, Vol. 33 (1995) 937–978.

DOI: 10.1016/0008-6223(95)00025-9

Google Scholar

[17] Tserpes K.I., and Papanikos P., The effect of Stone–Wales defect on the tensile behavior and fracture of single-walled carbon nanotubes, Composite Structures, 79 (2007) 581-589.

DOI: 10.1016/j.compstruct.2006.02.020

Google Scholar

[18] Hirai Y., and Nishimaki S., Molecular Dynamics Studies on Mechanical Properties of Carbon Nano Tubes with Pinhole Defects, Japanese Journal of Applied Physics, 42, (2003) 4120 - 4123.

DOI: 10.1143/jjap.42.4120

Google Scholar

[19] Belytschko, T, Xiao, S.P., Schatz, G.C., Ruoff R.S., Atomistic simulations of nanotube fracture, Physical Review B, 65, (2002) 235430/1 – 235430/8.

DOI: 10.1103/physrevb.65.235430

Google Scholar

[20] Chandra, N., Namilae, S., and Shet, C., Local elastic properties of carbon nanotubes in the presence of Stone–Wales defects, Physical Review B, Vol. 69, (2004) 964101/1 - 964101/12.

DOI: 10.1103/physrevb.69.094101

Google Scholar

[21] Liew, K.M., He, X.Q., and Wong, C.H., On the study of elastic and plastic properties of multi-walled carbon nanotubes under axial tension using molecular dynamics simulations, Acta Materiala, Vol. 52, (2004) 2521–2527.

DOI: 10.1016/j.actamat.2004.01.043

Google Scholar

[22] Li, C., Chou, T-W., A structural mechanics approach for the analysis of carbon nanotubes. International Journal of Solids and Structures, Vol. 40, (2003) 2487–2499.

DOI: 10.1016/s0020-7683(03)00056-8

Google Scholar

[23] Tserpes, K.I., and Papanikos, P., Finite element modeling of single-Walled carbon nanotubes, Composites Part B (Engineering), Vol. 36, (2005) 468-477.

DOI: 10.1016/j.compositesb.2004.10.003

Google Scholar

[24] Anand Y Joshi, S. P. Harsha, Satish C Sharma Dynamic Analysis of a Clamped Wavy Single Walled Carbon Nanotube based Nano Mechanical Sensors, ASME Journal of Nanotechnology in Engineering and Medicine, 1, (3), (2010) 031007-1-7.

DOI: 10.1115/1.4002072

Google Scholar

[25] Ajay M. Patel, Anand Y. Joshi, Effect of waviness on the dynamic characteristics of Double Walled Carbon Nanotubes, Nanoscience and Nanotechanology Latters, Vol. 6, (2014) 1–9.

DOI: 10.1166/nnl.2014.1720

Google Scholar

[26] Ajay M. Patel, Anand Y Joshi, Investigating the Influence of Surface Deviations in Double Wall Carbon Nanotube based Nanomechanical Sensors, Computational Materials Science, Volume 89, (2014) 157–164.

DOI: 10.1016/j.commatsci.2014.03.034

Google Scholar

[27] Anand Y Joshi, S. P. Harsha, Satish C Sharma, Effect of chirality and atomic vacancies on the dynamics of nano resonator based on SWCNT, Sensor Review, 31, (1), 2011, 47-57.

DOI: 10.1108/02602281111099080

Google Scholar

[28] Anand Y Joshi, S. P. Harsha, Satish C Sharma, The Effect of Pinhole Defect on Vibration Characteristics of Single Walled Carbon Nanotube, Physica E: Low Dimensional systems & Nanostructures, 43, (5), (2011) 1040-1045.

DOI: 10.1016/j.physe.2010.12.011

Google Scholar