[1]
Evelina Labbanczova, Iron Based Degradable Foam Structures for Potential Orthopedic Applications, International Journal of Electrochemical Science; Dec2013, Vol. 8 Issue 12, p.12451.
Google Scholar
[2]
T. Ram Prabhu, V. K. Varma, Srikanth Vedantam, Effect of reinforcement type, size, and volume fraction on the tribological behavior of Fe matrix composites at high sliding speed conditions, Wear, Volume 309, Issues 1–2, 15 January 2014, Pages 247–255.
DOI: 10.1016/j.wear.2013.10.001
Google Scholar
[3]
Mohammad Mahdi Sotoudehnia, A. Paul, Dispersion of carbon nanotubes in iron by wet processing for the preparation of iron–carbon nanotube composites, Powder Technology 05/2014; 258: 1–5.
DOI: 10.1016/j.powtec.2014.03.006
Google Scholar
[4]
J.Y. Such, D.H. Bae, Mechanical properties of Fe-based composites reinforced with multi-walled carbon nanotubes, Materials Science and Engineering A, Volume 582, 10 October 2013, Pages 321–325.
DOI: 10.1016/j.msea.2013.06.057
Google Scholar
[5]
Abdulkadir EKSI, Effects of Powder Hardness and Particle Size on the Densification of Cold Isostatically Pressed Powder, Turkish Journal of Engineering & Environmental Sciences; 2002, Vol. 26 Issue 5, p.377.
Google Scholar
[6]
Ali Gungor, Mechanical properties of iron powder filled high density polyethylene composites, Materials and Design, 01/2007; 28(3): 1027-1030.
DOI: 10.1016/j.matdes.2005.11.003
Google Scholar
[7]
CanhuiLua, Qi Wang, Preparation of ultrafine polypropylene/iron composite powders through pan-milling, Journal of Materials Processing Technology 02/2004; 145(3): 336-344.
DOI: 10.1016/j.jmatprotec.2003.08.002
Google Scholar
[8]
A.K. Eksi, A.H. Yuzbasioglu, Effect of sintering and pressing parameters on the densification of cold isostatically pressed Al and Fe powders, Materials and Design, Vol. 28(2007), p.1364 – 1368.
DOI: 10.1016/j.matdes.2006.01.018
Google Scholar
[9]
Sumesh Narayan, Ananthanarayanan Rajesh kannan, Strain Hardening Behaviour in Forming of Sintered Iron-0. 35% Carbon Powder Metallurgy Perform During Cold Upsetting, Materials Research, 14 (4) (2011). pp.1-7. ISSN 1516-1439.
DOI: 10.1590/s1516-14392011005000074
Google Scholar
[10]
Goutam Dutta, Dipankar Bose, Effect of Sintering Temperature on Density, Porosity and Hardness of a Powder Metallurgy Component, International journal of Emerging Technology and Advanced Engineering (IJETAE)-Vol. 2, Issue 8, pp.121-123, August, (2012).
Google Scholar
[11]
Van Trinh Pham, Hung Thang Bui, Bao Trung Tran, Van Tu Nguyen, Dinh Quang Le, Xuan Tinh Than, Van Chuc Nguyen, Dinh Phuong Doan and Ngoc Minh Phan The effect of sintering temperature on the mechanical properties of a Cu/CNT nanocomposite prepared via a powder metallurgy method, Advances in Natural Sciences: Nanoscience and Nanotechnology 03/2011; 2: 015006. 6262/2/1/015006.
DOI: 10.1088/2043-6262/2/1/015006
Google Scholar
[12]
T. Laha, A. Agarwal, Effect of sintering on thermally sprayed carbon nanotube reinforced aluminum nano composite, Materials Science & Engineering A, v 480, pp.323-332 (2008).
DOI: 10.1016/j.msea.2007.07.047
Google Scholar
[13]
Md. Mujibur Rahman, SanyShahriman Md. Nor, HendriYani Rahman, The Effects of Warm Compaction Route, International Journal on Advanced Science Engineering Technology, Vol. 2 (2012).
Google Scholar
[14]
Malgorzata Gradzka-Dahlke, A tribological study of composite material based on iron with addition of calcium pyrophosphate, Wear, Volume 261, Issues 11–12, 20 December 2006, Pages 1383–1389.
DOI: 10.1016/j.wear.2006.03.047
Google Scholar
[15]
C. Parswajinan, B. Vijaya Ramnath, C. Elanchezhian, S. V. Pragadeesh, P. R. Ramkishore, V. Sabarish, Investigation on Mechanical Properties of Nano Ferrous Composite, Procedia Engineering 97 ( 2014 ) 513 – 521.
DOI: 10.1016/j.proeng.2014.12.276
Google Scholar
[16]
IzabelaFirkowska, Andre Boden, Anna-Maria Vogt and Stephanie Reich, Effect of carbon nanotube surface modification on thermal properties of copper–CNT composites, J. Mater. Chem., 2011, 21, 17541. (2011).
DOI: 10.1039/c1jm12671g
Google Scholar
[17]
Rajkumar. K and Aravindan. S, Tribological performance of microwave sintered copper- CNT composites, Wear, 270(2011) 613-621.
DOI: 10.1016/j.wear.2011.01.017
Google Scholar
[18]
Pham Quang, Young GiJeong, SeungChae Yoon, Sun Ig Hong, Soon Hyung Hong, and HyoungSeop Kim, Carbon Nano Tube Reinforced Metal Matrix Nano Composites via Equal Channel Angular Pressing, Materials Science Forum Vols. 534-536 (2007) pp.245-248.
DOI: 10.4028/www.scientific.net/msf.534-536.245
Google Scholar
[19]
Padmashree Anand and R S Kulkarni, Compressibility Studies on the Effect of Increase in Iron Content on Copper-Iron Powder Blends, International Journal of Engineering Science and Innovative Technology (IJESIT) Volume 2, Issue 3, May (2013).
Google Scholar
[20]
Udur Cavdar, Bekir Sadyk Unlu, Enver Atyk, Effect of the Copper Amount in Iron-based powder-metal compacts, Materials and Technologies 01/2015; 49(1).
Google Scholar
[21]
Lubna Rais, Dr. Rajneesh Sharma, Dr. Vimal Sharma, Synthesis and structural characterization of Al-CNT metal matrix composite using Physical Mixing Method, IOSR Journal of Applied Physics (IOSR-JAP) e-ISSN: 2278-4861. Volume 5, Issue 4 (Nov. - Dec. 2013), PP 54-57.
DOI: 10.9790/4861-0545457
Google Scholar
[22]
Shadakshari R, Dr. Mahesha K, Dr. Niranjan H B, Carbon Nanotube Reinforced Aluminium Matrix Composites – A Review, International Journal of Innovative Research in Science, Engineering and Technology Vol. 1, Issue 2, December (2012).
Google Scholar
[23]
Z.Y. Liu, S.J. Xu, B.L. Xiao , P. Xue, W.G. Wang, Z.Y. Ma, Effect of ball-milling time on mechanical properties of carbon nanotubes reinforced aluminum matrix composites, Composites Part A, Applied Science and Manufacturing 12/2012; 43(12): 2161–2168.
DOI: 10.1016/j.compositesa.2012.07.026
Google Scholar
[24]
LIU Shi-ying, GAO Fei-peng, ZHANG Qiong-yuan, ZHU Xue, LI Wen-zhen, Fabrication of carbon nanotubes reinforced AZ91D composites by ultrasonic processing, Transactions of Nonferrous Metals Society of China, Volume 20, Issue 7, July 2010, Pages 1222–1227.
DOI: 10.1016/s1003-6326(09)60282-x
Google Scholar
[25]
Katsuyoshi Kondoh, Thotsaphon Threrujirapapong, Hisashi Imai, Junko Umeda, Bunshi Fugetsu, CNTs/TiC Reinforced Titanium Matrix Nanocomposites via Powder Metallurgy and Its Microstructural and Mechanical Properties, Journal of Nano materials Volume 2008 (2008).
DOI: 10.1155/2008/127538
Google Scholar
[26]
C. Parswajinan, B. Vijaya Ramnath, C. Elanchezhian, S. V. Pragadeesh, P. R. Ramkishore, V. Sabarish Investigation on Mechanical Properties of Nano Ferrous Composite, Procedia Engineering 97 ( 2014 ) 513 – 521.
DOI: 10.1016/j.proeng.2014.12.276
Google Scholar
[27]
B. Vijaya Ramnath, C. Parswajinan, C. Elanchezhian, S. V. Pragadeesh, C. Kavin, P. R. Ramkishore, V. Sabarish, Experimental Investigation on Compression and Chemical Properties of Aluminium Nano Composite, International Journal Applied Mechanics and Materials, Volume 680, July 2014, Page 7-10.
DOI: 10.4028/www.scientific.net/amm.680.7
Google Scholar
[28]
B.S. Mitchell, An Introduction to Materials Engineering and Science for Chemical and Materials Engineers, ISBN: 0471436232, 9780471436232 John Wiley & Sons, Inc., New Jersey, (2004).
Google Scholar
[29]
DanqingYi , Pengchao Yu , Bin Hu , Huiqun Liu , Bin Wang , Yong Jiang, Preparation of nickel-coated titanium carbide particulates and their use in the production of reinforced iron matrix composites, Materials and Design 12/2013; 52: 572-579.
DOI: 10.1016/j.matdes.2013.05.097
Google Scholar
[30]
K.L. Kepple, G.P. Sanborn, P.A. Lacasse, K.M. Gruenberg, W.J. Ready, Improved fracture toughness of carbon fiber composite functionalized with multi walled carbon nanotubes, CarbonVolume 46, Issue 15, December 2008, Pages 2026–(2033).
DOI: 10.1016/j.carbon.2008.08.010
Google Scholar
[31]
Therunjirapapong Thotsaphon, Kondoh Katsuyoshi, Umeda Junko, Imai Hisahi, Friction and wear behaviour of Titanium matrix composite reinforced with carbon nanotubes under dry condition, Transactions of JWRI, Vol 37 (2008).
Google Scholar
[32]
M.S. Senthil Saravanan, S.P. Kumaresh Babu, K. Sivaprasad, Mechanically Alloyed Carbon Nanotubes (CNT) Reinforced Nano crystalline AA 4032: Synthesis and Characterization, Journal of Minerals and Materials Characterization and Engineering, Vol. 9 No. 11, 2010, pp.1027-1035.
DOI: 10.4236/jmmce.2010.911074
Google Scholar
[33]
FawadInam, Andrew Heaton, PeterBrown, TonPeijs, MichaelReece, Effects of dispersion surfactants on the properties of ceramic–carbon nanotube (CNT) nano composites, Ceramics International Volume 40, Issue 1, Part A, January 2014, Pages 511–516.
DOI: 10.1016/j.ceramint.2013.06.031
Google Scholar
[34]
Eugene E. Feldshtein, Larisa N. Dyachkova, On the properties and Tribological behaviors of P/M iron based composites reinforced with ultrafine particulates, Composites Part B, Engineering, Volume 58, March 2014, Pages 16–24.
DOI: 10.1016/j.compositesb.2013.10.015
Google Scholar
[35]
B. Vijaya Ramnath, C. Elanchezhian, M. Jaivignesh, S. Rajesh, C. Parswajinan, A. Siddique Ahmed Ghias, Evaluation of mechanical properties of aluminium alloy–alumina–boron carbide metal matrix composites, Materials and Design, 58 (2014) 332–338.
DOI: 10.1016/j.matdes.2014.01.068
Google Scholar
[36]
C. Parswajinan, B. Vijaya Ramnath, M. Vetrivel, C. Elanchezhian, K. Loganathan, R. Sarvesh, C. Rohit Prasanna, R. N. Karthik Babu, Experimental Investigation of Mechanical and Chemical Properties of Aluminium reinforced with MWCNT, Accepted for publication.
DOI: 10.4028/www.scientific.net/amm.766-767.287
Google Scholar
[37]
B. Vijaya Ramnath, C. Parswajinan, C. Elanchezhian, S. V. Pragadeesh, P. R. Ramkishore, V. Sabarish, A Review on CNT Reinforced Aluminium and Magnesium Matrix Composites, International Journal Applied Mechanics and Materials, Volume 591, pp.120-123.
DOI: 10.4028/www.scientific.net/amm.591.120
Google Scholar