[1]
T. Bäck, Evolutionary Algorithms in Theory and Practice, New York, Oxfortd University Press, (1996).
Google Scholar
[2]
S. R. Bodner: Unified Plasticity for Engineering Applications, New York, Kluwer Academic / Plenum Publishers, (2002).
Google Scholar
[3]
S. R. Bodner, J. Aboudi, Stress Wave Propagation in Rods of Elastic Visco-Plastic Material, in: Solid Structures, Great Britain, 1983, pp.305-314.
DOI: 10.1016/0020-7683(83)90029-x
Google Scholar
[4]
S. R. Bodner, K. S. Chan, Modeling of Continuum Datamage for Application in Elastic Vicso-Plastic Constitutive Equations, in: Engineering Fracture Mechanics, Great Britain, 1986, pp.705-712.
DOI: 10.1016/0013-7944(86)90034-2
Google Scholar
[5]
I. Daňo, E. Ostertagová, Numerical methods, Probability and Mathematical Statistics, Theory, Examples and Practical Applications with Mtlab (in Slovak), Equilibria, 2011, ISBN 978-80-89284-74-0.
Google Scholar
[6]
Y. He, X. Chen, N. Bai, Simulation of Sn-0, 7 Cu Solder with Bodner-Partom Constitutive Model. IEEE, 2006. 0-7803-9524.
DOI: 10.1109/itherm.2006.1645452
Google Scholar
[7]
M. Mach, Evolutionary algorithms, Elements and Principles (in Slovak), Košice, Elfa, 2009, ISBN 978-80-8086-123-0.
Google Scholar
[8]
V. Nohajová, Identification of Parameters of Bodner-Partom Viscoelastic Material Model (in Slovak), Dissertacion thesis, Košice, (2011).
Google Scholar
[9]
M. Pyrz, K. Woznica, Parametres, Identification of Viscoplastic Models Using Evolutionary Algorithms, XXI ICTAM, Warsaw, (2004).
Google Scholar
[10]
A. Skrzat, Modeling of Elasto-Plastic Materials in Finite Element Method, in: Scientific buletin, Serie C, Volume XXIII. Fascicle: Mechanics, Tribology, Machine Manufacturing Technology, pp.163-168, ISSN 1224-32.
Google Scholar