[1]
A. Buasri, B. Ksapabutr, M. Panapoy and N. Chaiyut. (2012). Process optimization for ethyl ester production in fixed bed reactor using calcium oxide impregnated palm shell activated carbon (CaO/PSAC). Korean J. Chem Eng. 29(12), 1708-1712.
DOI: 10.14710/ijred.1.3.81-86
Google Scholar
[2]
M. Kouzu and H. Hidaka. (2012). Transesterification of vegetable oil into biodiesel catalyzed by CaO: A review. Fuel. 93, 1-12.
DOI: 10.1016/j.fuel.2011.09.015
Google Scholar
[3]
P. L. Boey, G. P. Maniam, and S. A. Hamid. (2011). Performance of calcium oxide as a heterogeneous catalyst in biodiesel production: a review. Chem. Eng. J., 168(1), 15-22.
DOI: 10.1016/j.cej.2011.01.009
Google Scholar
[4]
J. Boro, L. J. Konwar, A. J. Thakur and D. Deka. (2014). Ba doped CaO derived from waste shells of T striatula (TS-CaO) as heterogeneous catalyst for biodiesel production. Fuel. 129, 182-187.
DOI: 10.1016/j.fuel.2014.03.067
Google Scholar
[5]
L. L. Mguni, R. Meijboom and K. Jalama. (2012). Biodiesel production over nano-MgO supported on titania. W Acd Sci Eng Tech. 6, 1155-1159.
Google Scholar
[6]
E. Akbar, N. Binitha, Z. Yaakob, S. K. Kamarudin, and J. Salimon. (2009). Preparation of Na doped SiO2 solid catalysts by the sol-gel method for the production of biodiesel from jatropha oil. Green Chem. 11, 1862-1866.
DOI: 10.1039/b916263c
Google Scholar
[7]
M. Tariq, S. Ali, F. Ahmad, M. Ahmad, M. Zafar, N. Khalid and M. A. Khan. Identification, FT-IR, NMR (1H and 13C) and GC/MS studies of fatty acid methyl esters in biodiesel from rocket seed oil. Fuel Process. Technol. 92(3), 336-341.
DOI: 10.1016/j.fuproc.2010.09.025
Google Scholar
[8]
A. Birla, B. Singh, S. N. Upadhyay and Y. C. Sharma. (2012). Kinetics studies of synthesis of biodiesel from waste frying oil using a heterogeneous catalyst derived from snail shell. Bioresour. Technol. 106, 95-100.
DOI: 10.1016/j.biortech.2011.11.065
Google Scholar
[9]
M. Farooq, A. Ramli and D. Subbarao. (2013). Biodiesel production from waste cooking oil using bifunctional heterogeneous solid catalysts. J Clean Prod. 59, 131-140.
DOI: 10.1016/j.jclepro.2013.06.015
Google Scholar
[10]
A. S. A. Al-Fatesh and A. H. Fakeeha. (2012). Effects of calcination and activation temperature on dry reforming catalysts. J Saudi Chem Soc. 16, 55-61.
DOI: 10.1016/j.jscs.2010.10.020
Google Scholar
[11]
Y. Wong, Y. Tan, Y. Taufiq-Yap, and I. Ramli. (2014). Effect of calcination temperatures of CaO/Nb2O5 mixed oxides catalysts on biodiesel production. Sains Malaysiana. 43(5), 783-790.
Google Scholar
[12]
Z. Wen, X. Yu, S. T. Tu, J. Yan, and E. Dahlquist. (2010). Biodiesel production from waste cooking oil catalyzed by TiO2-MgO mixed oxides. Bioresour. Technol. 101, 9570-9576.
DOI: 10.1016/j.biortech.2010.07.066
Google Scholar
[13]
L. L. Marciniuk, P. Hammer, H. O. Pastore, U. Schuchardt and D. Cardoso. (2014). Sodium titanate as basic catalyst in transesterification reactions. Fuel. 118, 48-54.
DOI: 10.1016/j.fuel.2013.10.036
Google Scholar
[14]
M. Takase, Y. Chen, H. Liu, T. Zhao, L. Yang and X. Wu. (2014). Biodiesel production from non-edible Silybum marianum oil using heterogeneous solid base catalyst under ultrasonication. Ultrason. Sonochem. 21(5), 1752-1762.
DOI: 10.1016/j.ultsonch.2014.04.003
Google Scholar