Review on Dissolved Fault Gases in Monitoring Bio-Oil Filled Transformer

Article Preview

Abstract:

The combination of solid insulation (usually cellulose paper) and liquid insulation (usually mineral oil) yield good dielectric properties at fair cost. However, arising concerns on environmental effect of mineral oil when leakage and its risk of fire has force researches for alternative fluids. One of the suitable options for replacement of mineral oil is biodegradable oil that is plant-based, high biodegradability, non-toxicity and high fire point. Some refining and modification to crude vegetable oils resulting to suitable transformer dielectric fluid such as BIOTEMP®, ENVIROTEMP® FR3 and PFAE (palm fatty acid ester). Application of these oils in small scale distribution transformers give positive feedback so far, hence, led to development of biodegradable oil-based large power transformer. Monitoring of the oil for power transformer is important to ensure its reliability and avoid unnecessary cost of failure. Dissolved Gas Analysis (DGA) is one of the methods for oil monitoring of transformer. This method analyzes oil condition to detect incipient faults so that relevant actions can be made before actual failures occur. This paper will review the hydrocarbon gases or known as faults gases for monitoring and faults diagnosis for mineral and biodegradable oil-filled transformer. Past works about DGA on biodegradable oil such as sunflower, soybean, and corn oil are analyzed. Any different on gases production of oil through different tests will be discuss further in this paper.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

69-73

Citation:

Online since:

January 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] T. Nunn, Cement Industry Technical Conference, 2000 IEEE-IAS/PCA, IEEE, 2000, pp.105-112.

DOI: 10.1109/citcon.2000.848505

Google Scholar

[2] D. Martin, N. Lelekakis, W. Guo, Y. Odarenko, Electrical Insulation Magazine, IEEE, 27 (2011) 6-13.

Google Scholar

[3] Y. Bertrand, L. Hoang, Properties and Applications of Dielectric Materials, 2003. Proceedings of the 7th International Conference on, IEEE, 2003, pp.491-494.

Google Scholar

[4] P. Thomas, S. Sridhar, Electrical Insulation, 1998. Conference Record of the 1998 IEEE International Symposium on, IEEE, 1998, pp.570-573.

Google Scholar

[5] R. Badent, Y. Julliard, K. Kist, A. Schwab, Electrical Insulation and Dielectric Phenomena, 1999 Annual Report Conference on, IEEE, 1999, pp.638-641.

DOI: 10.1109/ceidp.1999.807886

Google Scholar

[6] K. Mammootty, T. Ramu, Electrical Insulation, IEEE Transactions on, (1983) 541-550.

Google Scholar

[7] Z. Wang, X. Yi, J. Huang, J.V. Hinshaw, J. Noakhes, Electrical Insulation Magazine, IEEE, 28 (2012) 45-56.

DOI: 10.1109/mei.2012.6340524

Google Scholar

[8] Y. Xu, S. Qian, Q. Liu, Z. Wang, Dielectrics and Electrical Insulation, IEEE Transactions on, 21 (2014) 683-692.

Google Scholar

[9] K. Rapp, P. Stenborg, CP0414, Cooper Power Systems, Waukesha, WI, (2004).

Google Scholar

[10] D. Martin, I. Khan, J. Dai, Z. Wang, TJH2b Euro Tech. Conf., Chester, UK, 2006, pp.1-20.

Google Scholar

[11] D. Martin, N. Lelekakis, V. Davydov, Y. Odarenko, IEEE Electrical Insulation Magazine, 26 (2010) 41-48.

DOI: 10.1109/mei.2010.5585007

Google Scholar

[12] IEEE Std C57. 104-2008 (Revision of IEEE Std C57. 104-1991), (2009) 1-36.

Google Scholar

[13] U. Biermann, J.O. Metzger, Oleochemicals under Changing Global Conditiones, Hamburg, (2007) 25-27.

Google Scholar

[14] I. Fernández, A. Ortiz, F. Delgado, C. Renedo, S. Pérez, Electric Power Systems Research, 98 (2013) 58-69.

DOI: 10.1016/j.epsr.2013.01.007

Google Scholar

[15] Information available from: www. abb. com.

Google Scholar

[16] S.D. Plantation, (2013).

Google Scholar

[17] N. Azis, J. Jasni, M.Z.A. Ab Kadir, M.N. Mohtar.

Google Scholar

[18] P. Hopkinson, L. Dix, C. McShane, H. Moore, S. Moore, J. Murphy, T. Prevost, S. Smith, Transmission and Distribution Conference and Exhibition, 2005/2006 IEEE PES, IEEE, 2006, pp.15-17.

DOI: 10.1109/tdc.2006.1668444

Google Scholar

[19] H. Wilhelm, C. Santos, G. Stocco, Dielectrics and Electrical Insulation, IEEE Transactions on, 21 (2014) 1071-1078.

Google Scholar

[20] T. Oommen, Electrical Insulation Magazine, IEEE, 18 (2002) 6-11.

Google Scholar

[21] N. Muhamad, B. Phung, T. Blackburn, K. Lai, Condition Monitoring and Diagnosis, 2008. CMD 2008. International Conference on, IEEE, 2008, pp.663-666.

DOI: 10.1109/cmd.2008.4580208

Google Scholar

[22] Y. Liu, J. Li, Z. Zhang, Electrical Insulation (ISEI), Conference Record of the 2012 IEEE International Symposium on, IEEE, 2012, pp.223-226.

Google Scholar

[23] H. Wilhelm, M. Stocco, L. Tulio, W. Uhren, S. Batista Jr, Dielectrics and Electrical Insulation, IEEE Transactions on, 20 (2013).

DOI: 10.1109/tdei.2013.6571461

Google Scholar

[24] X. Wang, X. Yi, S.T. Li, Z.D. Wang, J.V. Hinshaw, J. Noakhes, Condition Monitoring and Diagnosis (CMD), 2012 International Conference on, 2012, pp.617-620.

Google Scholar

[25] N.A. Muhamad, B.T. Phung, T.R. Blackburn, Electrical Insulating Materials, 2008. (ISEIM 2008). International Symposium on, 2008, pp.24-27.

DOI: 10.1109/iseim.2008.4664434

Google Scholar

[26] A.A. Suleiman, N.A. Muhamad, International Review on Modelling & Simulations, 4 (2011).

Google Scholar